Liste des fractions de n/71 en base 2.
Il existe 2 périodes de 35 chiffres pour n/71 en base 2.
Pour toutes les fractions de n/71 en base 2, la période de 1/71 revient alors 35 fois (en orange)
1/71=0,00000011100110110000101011010001001...
2/71=0,00000111001101100001010110100010010...
3/71=0,00001010110100010010000001110011011...
4/71=0,00001110011011000010101101000100100...
5/71=0,00010010000001110011011000010101101...
6/71=0,00010101101000100100000011100110110...
7/71=0,00011001001111010100101110110111111...
8/71=0,00011100110110000101011010001001000...
9/71=0,00100000011100110110000101011010001...
10/71=0,00100100000011100110110000101011010...
11/71=0,00100111101010010111011011111100011...
12/71=0,00101011010001001000000111001101100...
13/71=0,00101110110111111000110010011110101...
14/71=0,00110010011110101001011101101111110...
15/71=0,00110110000101011010001001000000111...
16/71=0,00111001101100001010110100010010000...
17/71=0,00111101010010111011011111100011001...
18/71=0,01000000111001101100001010110100010...
19/71=0,01000100100000011100110110000101011...
20/71=0,01001000000111001101100001010110100...
21/71=0,01001011101101111110001100100111101...
22/71=0,01001111010100101110110111111000110...
23/71=0,01010010111011011111100011001001111...
24/71=0,01010110100010010000001110011011000...
25/71=0,01011010001001000000111001101100001...
26/71=0,01011101101111110001100100111101010...
27/71=0,01100001010110100010010000001110011...
28/71=0,01100100111101010010111011011111100...
29/71=0,01101000100100000011100110110000101...
30/71=0,01101100001010110100010010000001110...
31/71=0,01101111110001100100111101010010111...
32/71=0,01110011011000010101101000100100000...
33/71=0,01110110111111000110010011110101001...
34/71=0,01111010100101110110111111000110010...
35/71=0,01111110001100100111101010010111011...
36/71=0,10000001110011011000010101101000100...
37/71=0,10000101011010001001000000111001101...
38/71=0,10001001000000111001101100001010110...
39/71=0,10001100100111101010010111011011111...
40/71=0,10010000001110011011000010101101000...
41/71=0,10010011110101001011101101111110001...
42/71=0,10010111011011111100011001001111010...
43/71=0,10011011000010101101000100100000011...
44/71=0,10011110101001011101101111110001100...
45/71=0,10100010010000001110011011000010101...
46/71=0,10100101110110111111000110010011110...
47/71=0,10101001011101101111110001100100111...
48/71=0,10101101000100100000011100110110000...
49/71=0,10110000101011010001001000000111001...
50/71=0,10110100010010000001110011011000010...
51/71=0,10110111111000110010011110101001011...
52/71=0,10111011011111100011001001111010100...
53/71=0,10111111000110010011110101001011101...
54/71=0,11000010101101000100100000011100110...
55/71=0,11000110010011110101001011101101111...
56/71=0,11001001111010100101110110111111000...
57/71=0,11001101100001010110100010010000001...
58/71=0,11010001001000000111001101100001010...
59/71=0,11010100101110110111111000110010011...
60/71=0,11011000010101101000100100000011100...
61/71=0,11011011111100011001001111010100101...
62/71=0,11011111100011001001111010100101110...
63/71=0,11100011001001111010100101110110111...
64/71=0,11100110110000101011010001001000000...
65/71=0,11101010010111011011111100011001001...
66/71=0,11101101111110001100100111101010010...
67/71=0,11110001100100111101010010111011011...
68/71=0,11110101001011101101111110001100100...
69/71=0,11111000110010011110101001011101101...
70/71=0,11111100011001001111010100101110110...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (35) est égal à 70 et donc au premier -1.