Liste des fractions de n/79 en base 2.
Il existe 2 périodes de 39 chiffres pour n/79 en base 2.
Pour toutes les fractions de n/79 en base 2, la période de 1/79 revient alors 39 fois (en orange)
1/79=0,000000110011110110010001110100101010001...
2/79=0,000001100111101100100011101001010100010...
3/79=0,000010011011100010110101011101111110011...
4/79=0,000011001111011001000111010010101000100...
5/79=0,000100000011001111011001000111010010101...
6/79=0,000100110111000101101010111011111100110...
7/79=0,000101101010111011111100110000100110111...
8/79=0,000110011110110010001110100101010001000...
9/79=0,000111010010101000100000011001111011001...
10/79=0,001000000110011110110010001110100101010...
11/79=0,001000111010010101000100000011001111011...
12/79=0,001001101110001011010101110111111001100...
13/79=0,001010100010000001100111101100100011101...
14/79=0,001011010101110111111001100001001101110...
15/79=0,001100001001101110001011010101110111111...
16/79=0,001100111101100100011101001010100010000...
17/79=0,001101110001011010101110111111001100001...
18/79=0,001110100101010001000000110011110110010...
19/79=0,001111011001000111010010101000100000011...
20/79=0,010000001100111101100100011101001010100...
21/79=0,010001000000110011110110010001110100101...
22/79=0,010001110100101010001000000110011110110...
23/79=0,010010101000100000011001111011001000111...
24/79=0,010011011100010110101011101111110011000...
25/79=0,010100010000001100111101100100011101001...
26/79=0,010101000100000011001111011001000111010...
27/79=0,010101110111111001100001001101110001011...
28/79=0,010110101011101111110011000010011011100...
29/79=0,010111011111100110000100110111000101101...
30/79=0,011000010011011100010110101011101111110...
31/79=0,011001000111010010101000100000011001111...
32/79=0,011001111011001000111010010101000100000...
33/79=0,011010101110111111001100001001101110001...
34/79=0,011011100010110101011101111110011000010...
35/79=0,011100010110101011101111110011000010011...
36/79=0,011101001010100010000001100111101100100...
37/79=0,011101111110011000010011011100010110101...
38/79=0,011110110010001110100101010001000000110...
39/79=0,011111100110000100110111000101101010111...
40/79=0,100000011001111011001000111010010101000...
41/79=0,100001001101110001011010101110111111001...
42/79=0,100010000001100111101100100011101001010...
43/79=0,100010110101011101111110011000010011011...
44/79=0,100011101001010100010000001100111101100...
45/79=0,100100011101001010100010000001100111101...
46/79=0,100101010001000000110011110110010001110...
47/79=0,100110000100110111000101101010111011111...
48/79=0,100110111000101101010111011111100110000...
49/79=0,100111101100100011101001010100010000001...
50/79=0,101000100000011001111011001000111010010...
51/79=0,101001010100010000001100111101100100011...
52/79=0,101010001000000110011110110010001110100...
53/79=0,101010111011111100110000100110111000101...
54/79=0,101011101111110011000010011011100010110...
55/79=0,101100100011101001010100010000001100111...
56/79=0,101101010111011111100110000100110111000...
57/79=0,101110001011010101110111111001100001001...
58/79=0,101110111111001100001001101110001011010...
59/79=0,101111110011000010011011100010110101011...
60/79=0,110000100110111000101101010111011111100...
61/79=0,110001011010101110111111001100001001101...
62/79=0,110010001110100101010001000000110011110...
63/79=0,110011000010011011100010110101011101111...
64/79=0,110011110110010001110100101010001000000...
65/79=0,110100101010001000000110011110110010001...
66/79=0,110101011101111110011000010011011100010...
67/79=0,110110010001110100101010001000000110011...
68/79=0,110111000101101010111011111100110000100...
69/79=0,110111111001100001001101110001011010101...
70/79=0,111000101101010111011111100110000100110...
71/79=0,111001100001001101110001011010101110111...
72/79=0,111010010101000100000011001111011001000...
73/79=0,111011001000111010010101000100000011001...
74/79=0,111011111100110000100110111000101101010...
75/79=0,111100110000100110111000101101010111011...
76/79=0,111101100100011101001010100010000001100...
77/79=0,111110011000010011011100010110101011101...
78/79=0,111111001100001001101110001011010101110...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (39) est égal à 78 et donc au premier -1.