Liste des fractions de n/109 en base 2.
Il existe 3 périodes de 36 chiffres pour n/109 en base 2.
Pour toutes les fractions de n/109 en base 2, la période de 1/109 revient alors 36 fois (en orange)
1/109=0,000000100101100100111111011010011011...
2/109=0,000001001011001001111110110100110110...
3/109=0,000001110000101110111110001111010001...
4/109=0,000010010110010011111101101001101100...
5/109=0,000010111011111000111101000100000111...
6/109=0,000011100001011101111100011110100010...
7/109=0,000100000111000010111011111000111101...
8/109=0,000100101100100111111011010011011000...
9/109=0,000101010010001100111010101101110011...
10/109=0,000101110111110001111010001000001110...
11/109=0,000110011101010110111001100010101001...
12/109=0,000111000010111011111000111101000100...
13/109=0,000111101000100000111000010111011111...
14/109=0,001000001110000101110111110001111010...
15/109=0,001000110011101010110111001100010101...
16/109=0,001001011001001111110110100110110000...
17/109=0,001001111110110100110110000001001011...
18/109=0,001010100100011001110101011011100110...
19/109=0,001011001001111110110100110110000001...
20/109=0,001011101111100011110100010000011100...
21/109=0,001100010101001000110011101010110111...
22/109=0,001100111010101101110011000101010010...
23/109=0,001101100000010010110010011111101101...
24/109=0,001110000101110111110001111010001000...
25/109=0,001110101011011100110001010100100011...
26/109=0,001111010001000001110000101110111110...
27/109=0,001111110110100110110000001001011001...
28/109=0,010000011100001011101111100011110100...
29/109=0,010001000001110000101110111110001111...
30/109=0,010001100111010101101110011000101010...
31/109=0,010010001100111010101101110011000101...
32/109=0,010010110010011111101101001101100000...
33/109=0,010011011000000100101100100111111011...
34/109=0,010011111101101001101100000010010110...
35/109=0,010100100011001110101011011100110001...
36/109=0,010101001000110011101010110111001100...
37/109=0,010101101110011000101010010001100111...
38/109=0,010110010011111101101001101100000010...
39/109=0,010110111001100010101001000110011101...
40/109=0,010111011111000111101000100000111000...
41/109=0,011000000100101100100111111011010011...
42/109=0,011000101010010001100111010101101110...
43/109=0,011001001111110110100110110000001001...
44/109=0,011001110101011011100110001010100100...
45/109=0,011010011011000000100101100100111111...
46/109=0,011011000000100101100100111111011010...
47/109=0,011011100110001010100100011001110101...
48/109=0,011100001011101111100011110100010000...
49/109=0,011100110001010100100011001110101011...
50/109=0,011101010110111001100010101001000110...
51/109=0,011101111100011110100010000011100001...
52/109=0,011110100010000011100001011101111100...
53/109=0,011111000111101000100000111000010111...
54/109=0,011111101101001101100000010010110010...
55/109=0,100000010010110010011111101101001101...
56/109=0,100000111000010111011111000111101000...
57/109=0,100001011101111100011110100010000011...
58/109=0,100010000011100001011101111100011110...
59/109=0,100010101001000110011101010110111001...
60/109=0,100011001110101011011100110001010100...
61/109=0,100011110100010000011100001011101111...
62/109=0,100100011001110101011011100110001010...
63/109=0,100100111111011010011011000000100101...
64/109=0,100101100100111111011010011011000000...
65/109=0,100110001010100100011001110101011011...
66/109=0,100110110000001001011001001111110110...
67/109=0,100111010101101110011000101010010001...
68/109=0,100111111011010011011000000100101100...
69/109=0,101000100000111000010111011111000111...
70/109=0,101001000110011101010110111001100010...
71/109=0,101001101100000010010110010011111101...
72/109=0,101010010001100111010101101110011000...
73/109=0,101010110111001100010101001000110011...
74/109=0,101011011100110001010100100011001110...
75/109=0,101100000010010110010011111101101001...
76/109=0,101100100111111011010011011000000100...
77/109=0,101101001101100000010010110010011111...
78/109=0,101101110011000101010010001100111010...
79/109=0,101110011000101010010001100111010101...
80/109=0,101110111110001111010001000001110000...
81/109=0,101111100011110100010000011100001011...
82/109=0,110000001001011001001111110110100110...
83/109=0,110000101110111110001111010001000001...
84/109=0,110001010100100011001110101011011100...
85/109=0,110001111010001000001110000101110111...
86/109=0,110010011111101101001101100000010010...
87/109=0,110011000101010010001100111010101101...
88/109=0,110011101010110111001100010101001000...
89/109=0,110100010000011100001011101111100011...
90/109=0,110100110110000001001011001001111110...
91/109=0,110101011011100110001010100100011001...
92/109=0,110110000001001011001001111110110100...
93/109=0,110110100110110000001001011001001111...
94/109=0,110111001100010101001000110011101010...
95/109=0,110111110001111010001000001110000101...
96/109=0,111000010111011111000111101000100000...
97/109=0,111000111101000100000111000010111011...
98/109=0,111001100010101001000110011101010110...
99/109=0,111010001000001110000101110111110001...
100/109=0,111010101101110011000101010010001100...
101/109=0,111011010011011000000100101100100111...
102/109=0,111011111000111101000100000111000010...
103/109=0,111100011110100010000011100001011101...
104/109=0,111101000100000111000010111011111000...
105/109=0,111101101001101100000010010110010011...
106/109=0,111110001111010001000001110000101110...
107/109=0,111110110100110110000001001011001001...
108/109=0,111111011010011011000000100101100100...
On remarque que le produit du nombre de périodes (3) et de leurs longueurs (36) est égal à 108 et donc au premier -1.