Liste des fractions de n/37 en base 3.
Il existe 2 périodes de 18 chiffres pour n/37 en base 3.
Pour toutes les fractions de n/37 en base 3, la période de 1/37 revient alors 18 fois (en orange)
1/37=0,000201200222021022...
2/37=0,001110101221112121...
3/37=0,002012002220210220...
4/37=0,002220210220002012...
5/37=0,010122111212100111...
6/37=0,011101012211121210...
7/37=0,012002220210220002...
8/37=0,012211121210011101...
9/37=0,020120022202102200...
10/37=0,021022000201200222...
11/37=0,022000201200222021...
12/37=0,022202102200020120...
13/37=0,100111010122111212...
14/37=0,101012211121210011...
15/37=0,101221112121001110...
16/37=0,102200020120022202...
17/37=0,110101221112121001...
18/37=0,111010122111212100...
19/37=0,111212100111010122...
20/37=0,112121001110101221...
21/37=0,120022202102200020...
22/37=0,121001110101221112...
23/37=0,121210011101012211...
24/37=0,122111212100111010...
25/37=0,200020120022202102...
26/37=0,200222021022000201...
27/37=0,201200222021022000...
28/37=0,202102200020120022...
29/37=0,210011101012211121...
30/37=0,210220002012002220...
31/37=0,211121210011101012...
32/37=0,212100111010122111...
33/37=0,220002012002220210...
34/37=0,220210220002012002...
35/37=0,221112121001110101...
36/37=0,222021022000201200...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (18) est égal à 36 et donc au premier -1.