Liste des fractions de n/103 en base 3.

Il existe 3 périodes de 34 chiffres pour n/103 en base 3.

Pour toutes les fractions de n/103 en base 3, la période de 1/103 revient alors 34 fois (en orange)

1/103=0,0000210020021212022220122022010102...

2/103=0,0001120110120201122211021121020211...

3/103=0,0002100200212120222201220220101020...

4/103=0,0010010221011110022122120012111122...

5/103=0,0010221011110022122120012111122001...

6/103=0,0011201101202011222110211210202110...

7/103=0,0012111122001001022101111002212212...

8/103=0,0020021212022220122022010102000021...

9/103=0,0021002002121202222012202201010200...

10/103=0,0021212022220122022010102000021002...

11/103=0,0022122120012111122001001022101111...

12/103=0,0100102210111100221221200121111220...

13/103=0,0101020000210020021212022220122022...

14/103=0,0102000021002002121202222012202201...

15/103=0,0102210111100221221200121111220010...

16/103=0,0110120201122211021121020211000112...

17/103=0,0111100221221200121111220010010221...

18/103=0,0112011012020112221102112102021100...

19/103=0,0112221102112102021100011201101202...

20/103=0,0120201122211021121020211000112011...

21/103=0,0121111220010010221011110022122120...

22/103=0,0122022010102000021002002121202222...

23/103=0,0200002100200212120222201220220101...

24/103=0,0200212120222201220220101020000210...

25/103=0,0201122211021121020211000112011012...

26/103=0,0202110001120110120201122211021121...

27/103=0,0210020021212022220122022010102000...

28/103=0,0211000112011012020112221102112102...

29/103=0,0211210202110001120110120201122211...

30/103=0,0212120222201220220101020000210020...

31/103=0,0220101020000210020021212022220122...

32/103=0,0221011110022122120012111122001001...

33/103=0,0221221200121111220010010221011110...

34/103=0,0222201220220101020000210020021212...

35/103=0,1000112011012020112221102112102021...

36/103=0,1001022101111002212212001211112200...

37/103=0,1002002121202222012202201010200002...

38/103=0,1002212212001211112200100102210111...

39/103=0,1010200002100200212120222201220220...

40/103=0,1011110022122120012111122001001022...

41/103=0,1012020112221102112102021100011201...

42/103=0,1020000210020021212022220122022010...

43/103=0,1020211000112011012020112221102112...

44/103=0,1021121020211000112011012020112221...

45/103=0,1022101111002212212001211112200100...

46/103=0,1100011201101202011222110211210202...

47/103=0,1100221221200121111220010010221011...

48/103=0,1101202011222110211210202110001120...

49/103=0,1102112102021100011201101202011222...

50/103=0,1110022122120012111122001001022101...

51/103=0,1111002212212001211112200100102210...

52/103=0,1111220010010221011110022122120012...

53/103=0,1112200100102210111100221221200121...

54/103=0,1120110120201122211021121020211000...

55/103=0,1121020211000112011012020112221102...

56/103=0,1122001001022101111002212212001211...

57/103=0,1122211021121020211000112011012020...

58/103=0,1200121111220010010221011110022122...

59/103=0,1201101202011222110211210202110001...

60/103=0,1202011222110211210202110001120110...

61/103=0,1202222012202201010200002100200212...

62/103=0,1210202110001120110120201122211021...

63/103=0,1211112200100102210111100221221200...

64/103=0,1212022220122022010102000021002002...

65/103=0,1220010010221011110022122120012111...

66/103=0,1220220101020000210020021212022220...

67/103=0,1221200121111220010010221011110022...

68/103=0,1222110211210202110001120110120201...

69/103=0,2000021002002121202222012202201010...

70/103=0,2001001022101111002212212001211112...

71/103=0,2001211112200100102210111100221221...

72/103=0,2002121202222012202201010200002100...

73/103=0,2010102000021002002121202222012202...

74/103=0,2011012020112221102112102021100011...

75/103=0,2011222110211210202110001120110120...

76/103=0,2012202201010200002100200212120222...

77/103=0,2020112221102112102021100011201101...

78/103=0,2021100011201101202011222110211210...

79/103=0,2022010102000021002002121202222012...

80/103=0,2022220122022010102000021002002121...

81/103=0,2100200212120222201220220101020000...

82/103=0,2101111002212212001211112200100102...

83/103=0,2102021100011201101202011222110211...

84/103=0,2110001120110120201122211021121020...

85/103=0,2110211210202110001120110120201122...

86/103=0,2111122001001022101111002212212001...

87/103=0,2112102021100011201101202011222110...

88/103=0,2120012111122001001022101111002212...

89/103=0,2120222201220220101020000210020021...

90/103=0,2121202222012202201010200002100200...

91/103=0,2122120012111122001001022101111002...

92/103=0,2200100102210111100221221200121111...

93/103=0,2201010200002100200212120222201220...

94/103=0,2201220220101020000210020021212022...

95/103=0,2202201010200002100200212120222201...

96/103=0,2210111100221221200121111220010010...

97/103=0,2211021121020211000112011012020112...

98/103=0,2212001211112200100102210111100221...

99/103=0,2212212001211112200100102210111100...

100/103=0,2220122022010102000021002002121202...

101/103=0,2221102112102021100011201101202011...

102/103=0,2222012202201010200002100200212120...

On remarque que le produit du nombre de périodes (3) et de leurs longueurs (34) est égal à 102 et donc au premier -1.