Liste des fractions de n/109 en base 3.
Il existe 4 périodes de 27 chiffres pour n/109 en base 3.
Pour toutes les fractions de n/109 en base 3, la période de 1/109 revient alors 27 fois (en orange)
1/109=0,000020200120121100102010222...
2/109=0,000111101011012200211021221...
3/109=0,000202001201211001020102220...
4/109=0,000222202022102101122120212...
5/109=0,001020102220000202001201211...
6/109=0,001111010110122002110212210...
7/109=0,001201211001020102220000202...
8/109=0,001222111121211210022011201...
9/109=0,002020012012110010201022200...
10/109=0,002110212210001111010110122...
11/109=0,002201120100122211112121121...
12/109=0,002222020221021011221202120...
13/109=0,010012221111212112100220112...
14/109=0,010110122002110212210001111...
15/109=0,010201022200002020012012110...
16/109=0,010222000020200120121100102...
17/109=0,011012200211021221000111101...
18/109=0,011110101101220021102122100...
19/109=0,011201001222111121211210022...
20/109=0,011221202120002222020221021...
21/109=0,012012110010201022200002020...
22/109=0,012110010201022200002020012...
23/109=0,012200211021221000111101011...
24/109=0,012221111212112100220112010...
25/109=0,020012012110010201022200002...
26/109=0,020102220000202001201211001...
27/109=0,020200120121100102010222000...
28/109=0,020221021011221202120002222...
29/109=0,021011221202120002222020221...
30/109=0,021102122100011110101101220...
31/109=0,021200022220202210210112212...
32/109=0,021221000111101011012200211...
33/109=0,022011201001222111121211210...
34/109=0,022102101122120212000222202...
35/109=0,022200002020012012110010201...
36/109=0,022220202210210112212021200...
37/109=0,100011110101101220021102122...
38/109=0,100102010222000020200120121...
39/109=0,100122211112121121002201120...
40/109=0,100220112010012221111212112...
41/109=0,101011012200211021221000111...
42/109=0,101101220021102122100011110...
43/109=0,101122120212000222202022102...
44/109=0,101220021102122100011110101...
45/109=0,102010222000020200120121100...
46/109=0,102101122120212000222202022...
47/109=0,102122100011110101101220021...
48/109=0,102220000202001201211001020...
49/109=0,110010201022200002020012012...
50/109=0,110101101220021102122100011...
51/109=0,110122002110212210001111010...
52/109=0,110212210001111010110122002...
53/109=0,111010110122002110212210001...
54/109=0,111101011012200211021221000...
55/109=0,111121211210022011201001222...
56/109=0,111212112100220112010012221...
57/109=0,112010012221111212112100220...
58/109=0,112100220112010012221111212...
59/109=0,112121121002201120100122211...
60/109=0,112212021200022220202210210...
61/109=0,120002222020221021011221202...
62/109=0,120100122211112121121002201...
63/109=0,120121100102010222000020200...
64/109=0,120212000222202022102101122...
65/109=0,121002201120100122211112121...
66/109=0,121100102010222000020200120...
67/109=0,121121002201120100122211112...
68/109=0,121211210022011201001222111...
69/109=0,122002110212210001111010110...
70/109=0,122100011110101101220021102...
71/109=0,122120212000222202022102101...
72/109=0,122211112121121002201120100...
73/109=0,200002020012012110010201022...
74/109=0,200022220202210210112212021...
75/109=0,200120121100102010222000020...
76/109=0,200211021221000111101011012...
77/109=0,201001222111121211210022011...
78/109=0,201022200002020012012110010...
79/109=0,201120100122211112121121002...
80/109=0,201211001020102220000202001...
81/109=0,202001201211001020102220000...
82/109=0,202022102101122120212000222...
83/109=0,202120002222020221021011221...
84/109=0,202210210112212021200022220...
85/109=0,210001111010110122002110212...
86/109=0,210022011201001222111121211...
87/109=0,210112212021200022220202210...
88/109=0,210210112212021200022220202...
89/109=0,211001020102220000202001201...
90/109=0,211021221000111101011012200...
91/109=0,211112121121002201120100122...
92/109=0,211210022011201001222111121...
93/109=0,212000222202022102101122120...
94/109=0,212021200022220202210210112...
95/109=0,212112100220112010012221111...
96/109=0,212210001111010110122002110...
97/109=0,220000202001201211001020102...
98/109=0,220021102122100011110101101...
99/109=0,220112010012221111212112100...
100/109=0,220202210210112212021200022...
101/109=0,221000111101011012200211021...
102/109=0,221021011221202120002222020...
103/109=0,221111212112100220112010012...
104/109=0,221202120002222020221021011...
105/109=0,222000020200120121100102010...
106/109=0,222020221021011221202120002...
107/109=0,222111121211210022011201001...
108/109=0,222202022102101122120212000...
On remarque que le produit du nombre de périodes (4) et de leurs longueurs (27) est égal à 108 et donc au premier -1.