Liste des fractions de n/79 en base 4.
Il existe 2 périodes de 39 chiffres pour n/79 en base 4.
Pour toutes les fractions de n/79 en base 4, la période de 1/79 revient alors 39 fois (en orange)
1/79=0,000303312101310222020012132302032211101...
2/79=0,001213230203221110100030331210131022202...
3/79=0,002123202311131332120103130112223233303...
4/79=0,003033121013102220200121323020322111010...
5/79=0,010003033121013102220200121323020322111...
6/79=0,010313011222323330300212320231113133212...
7/79=0,011222323330300212320231113133212010313...
8/79=0,012132302032211101000303312101310222020...
9/79=0,013102220200121323020322111010003033121...
10/79=0,020012132302032211101000303312101310222...
11/79=0,020322111010003033121013102220200121323...
12/79=0,021232023111313321201031301122232333030...
13/79=0,022202001213230203221110100030331210131...
14/79=0,023111313321201031301122232333030021232...
15/79=0,030021232023111313321201031301122232333...
16/79=0,030331210131022202001213230203221110100...
17/79=0,031301122232333030021232023111313321201...
18/79=0,032211101000303312101310222020012132302...
19/79=0,033121013102220200121323020322111010003...
20/79=0,100030331210131022202001213230203221110...
21/79=0,101000303312101310222020012132302032211...
22/79=0,101310222020012132302032211101000303312...
23/79=0,102220200121323020322111010003033121013...
24/79=0,103130112223233303002123202311131332120...
25/79=0,110100030331210131022202001213230203221...
26/79=0,111010003033121013102220200121323020322...
27/79=0,111313321201031301122232333030021232023...
28/79=0,112223233303002123202311131332120103130...
29/79=0,113133212010313011222323330300212320231...
30/79=0,120103130112223233303002123202311131332...
31/79=0,121013102220200121323020322111010003033...
32/79=0,121323020322111010003033121013102220200...
33/79=0,122232333030021232023111313321201031301...
34/79=0,123202311131332120103130112223233303002...
35/79=0,130112223233303002123202311131332120103...
36/79=0,131022202001213230203221110100030331210...
37/79=0,131332120103130112223233303002123202311...
38/79=0,132302032211101000303312101310222020012...
39/79=0,133212010313011222323330300212320231113...
40/79=0,200121323020322111010003033121013102220...
41/79=0,201031301122232333030021232023111313321...
42/79=0,202001213230203221110100030331210131022...
43/79=0,202311131332120103130112223233303002123...
44/79=0,203221110100030331210131022202001213230...
45/79=0,210131022202001213230203221110100030331...
46/79=0,211101000303312101310222020012132302032...
47/79=0,212010313011222323330300212320231113133...
48/79=0,212320231113133212010313011222323330300...
49/79=0,213230203221110100030331210131022202001...
50/79=0,220200121323020322111010003033121013102...
51/79=0,221110100030331210131022202001213230203...
52/79=0,222020012132302032211101000303312101310...
53/79=0,222323330300212320231113133212010313011...
54/79=0,223233303002123202311131332120103130112...
55/79=0,230203221110100030331210131022202001213...
56/79=0,231113133212010313011222323330300212320...
57/79=0,232023111313321201031301122232333030021...
58/79=0,232333030021232023111313321201031301122...
59/79=0,233303002123202311131332120103130112223...
60/79=0,300212320231113133212010313011222323330...
61/79=0,301122232333030021232023111313321201031...
62/79=0,302032211101000303312101310222020012132...
63/79=0,303002123202311131332120103130112223233...
64/79=0,303312101310222020012132302032211101000...
65/79=0,310222020012132302032211101000303312101...
66/79=0,311131332120103130112223233303002123202...
67/79=0,312101310222020012132302032211101000303...
68/79=0,313011222323330300212320231113133212010...
69/79=0,313321201031301122232333030021232023111...
70/79=0,320231113133212010313011222323330300212...
71/79=0,321201031301122232333030021232023111313...
72/79=0,322111010003033121013102220200121323020...
73/79=0,323020322111010003033121013102220200121...
74/79=0,323330300212320231113133212010313011222...
75/79=0,330300212320231113133212010313011222323...
76/79=0,331210131022202001213230203221110100030...
77/79=0,332120103130112223233303002123202311131...
78/79=0,333030021232023111313321201031301122232...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (39) est égal à 78 et donc au premier -1.