Liste des fractions de n/109 en base 4.
Il existe 6 périodes de 18 chiffres pour n/109 en base 4.
Pour toutes les fractions de n/109 en base 4, la période de 1/109 revient alors 18 fois (en orange)
1/109=0,000211210333122123...
2/109=0,001023021332310312...
3/109=0,001300232332033101...
4/109=0,002112103331221230...
5/109=0,002323320331010013...
6/109=0,003201131330132202...
7/109=0,010013002323320331...
8/109=0,010230213323103120...
9/109=0,011102030322231303...
10/109=0,011313301322020032...
11/109=0,012131112321202221...
12/109=0,013002323320331010...
13/109=0,013220200320113133...
14/109=0,020032011313301322...
15/109=0,020303222313030111...
16/109=0,021121033312212300...
17/109=0,021332310312001023...
18/109=0,022210121311123212...
19/109=0,023021332310312001...
20/109=0,023233203310100130...
21/109=0,030111020303222313...
22/109=0,030322231303011102...
23/109=0,031200102302133231...
24/109=0,032011313301322020...
25/109=0,032223130301110203...
26/109=0,033101001300232332...
27/109=0,033312212300021121...
28/109=0,100130023233203310...
29/109=0,101001300232332033...
30/109=0,101213111232120222...
31/109=0,102030322231303011...
32/109=0,102302133231031200...
33/109=0,103120010230213323...
34/109=0,103331221230002112...
35/109=0,110203032223130301...
36/109=0,111020303222313030...
37/109=0,111232120222101213...
38/109=0,112103331221230002...
39/109=0,112321202221012131...
40/109=0,113133013220200320...
41/109=0,120010230213323103...
42/109=0,120222101213111232...
43/109=0,121033312212300021...
44/109=0,121311123212022210...
45/109=0,122123000211210333...
46/109=0,123000211210333122...
47/109=0,123212022210121311...
48/109=0,130023233203310100...
49/109=0,130301110203032223...
50/109=0,131112321202221012...
51/109=0,131330132202003201...
52/109=0,132202003201131330...
53/109=0,133013220200320113...
54/109=0,133231031200102302...
55/109=0,200102302133231031...
56/109=0,200320113133013220...
57/109=0,201131330132202003...
58/109=0,202003201131330132...
59/109=0,202221012131112321...
60/109=0,203032223130301110...
61/109=0,203310100130023233...
62/109=0,210121311123212022...
63/109=0,210333122123000211...
64/109=0,211210333122123000...
65/109=0,212022210121311123...
66/109=0,212300021121033312...
67/109=0,213111232120222101...
68/109=0,213323103120010230...
69/109=0,220200320113133013...
70/109=0,221012131112321202...
71/109=0,221230002112103331...
72/109=0,222101213111232120...
73/109=0,222313030111020303...
74/109=0,223130301110203032...
75/109=0,230002112103331221...
76/109=0,230213323103120010...
77/109=0,231031200102302133...
78/109=0,231303011102030322...
79/109=0,232120222101213111...
80/109=0,232332033101001300...
81/109=0,233203310100130023...
82/109=0,300021121033312212...
83/109=0,300232332033101001...
84/109=0,301110203032223130...
85/109=0,301322020032011313...
86/109=0,302133231031200102...
87/109=0,303011102030322231...
88/109=0,303222313030111020...
89/109=0,310100130023233203...
90/109=0,310312001023021332...
91/109=0,311123212022210121...
92/109=0,312001023021332310...
93/109=0,312212300021121033...
94/109=0,313030111020303222...
95/109=0,313301322020032011...
96/109=0,320113133013220200...
97/109=0,320331010013002323...
98/109=0,321202221012131112...
99/109=0,322020032011313301...
100/109=0,322231303011102030...
101/109=0,323103120010230213...
102/109=0,323320331010013002...
103/109=0,330132202003201131...
104/109=0,331010013002323320...
105/109=0,331221230002112103...
106/109=0,332033101001300232...
107/109=0,332310312001023021...
108/109=0,333122123000211210...
On remarque que le produit du nombre de périodes (6) et de leurs longueurs (18) est égal à 108 et donc au premier -1.