Liste des fractions de n/157 en base 4.
Il existe 6 périodes de 26 chiffres pour n/157 en base 4.
Pour toutes les fractions de n/157 en base 4, la période de 1/157 revient alors 26 fois (en orange)
1/157=0,00012201123103332113221023...
2/157=0,00031002312213330233102112...
3/157=0,00103210101323323012323201...
4/157=0,00122011231033321132210230...
5/157=0,00200213020203313312031313...
6/157=0,00213020203313312031313002...
7/157=0,00231221333023310211200031...
8/157=0,00310023122133302331021120...
9/157=0,00322230311303301110302203...
10/157=0,01001032101013233230123232...
11/157=0,01013233230123232010010321...
12/157=0,01032101013233230123232010...
13/157=0,01110302203003222303113033...
14/157=0,01123103332113221023000122...
15/157=0,01201311121223213202221211...
16/157=0,01220112310333211322102300...
17/157=0,01232320100103210101323323...
18/157=0,01311121223213202221211012...
19/157=0,01323323012323201001032101...
20/157=0,02002130202033133120313130...
21/157=0,02020331331203131300200213...
22/157=0,02033133120313130020021302...
23/157=0,02112000310023122133302331...
24/157=0,02130202033133120313130020...
25/157=0,02203003222303113033011103...
26/157=0,02221211012013111212232132...
27/157=0,02300012201123103332113221...
28/157=0,02312213330233102112000310...
29/157=0,02331021120003100231221333...
30/157=0,03003222303113033011103022...
31/157=0,03022030032223031130330111...
32/157=0,03100231221333023310211200...
33/157=0,03113033011103022030032223...
34/157=0,03131300200213020203313312...
35/157=0,03210101323323012323201001...
36/157=0,03222303113033011103022030...
37/157=0,03301110302203003222303113...
38/157=0,03313312031313002002130202...
39/157=0,03332113221023000122011231...
40/157=0,10010321010132332301232320...
41/157=0,10023122133302331021120003...
42/157=0,10101323323012323201001032...
43/157=0,10120131112122321320222121...
44/157=0,10132332301232320100103210...
45/157=0,10211200031002312213330233...
46/157=0,10230001220112310333211322...
47/157=0,10302203003222303113033011...
48/157=0,10321010132332301232320100...
49/157=0,10333211322102300012201123...
50/157=0,11012013111212232132022212...
51/157=0,11030220300322230311303301...
52/157=0,11103022030032223031130330...
53/157=0,11121223213202221211012013...
54/157=0,11200031002312213330233102...
55/157=0,11212232132022212110120131...
56/157=0,11231033321132210230001220...
57/157=0,11303301110302203003222303...
58/157=0,11322102300012201123103332...
59/157=0,12000310023122133302331021...
60/157=0,12013111212232132022212110...
61/157=0,12031313002002130202033133...
62/157=0,12110120131112122321320222...
63/157=0,12122321320222121101201311...
64/157=0,12201123103332113221023000...
65/157=0,12213330233102112000310023...
66/157=0,12232132022212110120131112...
67/157=0,12310333211322102300012201...
68/157=0,12323201001032101013233230...
69/157=0,13002002130202033133120313...
70/157=0,13020203313312031313002002...
71/157=0,13033011103022030032223031...
72/157=0,13111212232132022212110120...
73/157=0,13130020021302020331331203...
74/157=0,13202221211012013111212232...
75/157=0,13221023000122011231033321...
76/157=0,13233230123232010010321010...
77/157=0,13312031313002002130202033...
78/157=0,13330233102112000310023122...
79/157=0,20003100231221333023310211...
80/157=0,20021302020331331203131300...
81/157=0,20100103210101323323012323...
82/157=0,20112310333211322102300012...
83/157=0,20131112122321320222121101...
84/157=0,20203313312031313002002130...
85/157=0,20222121101201311121223213...
86/157=0,20300322230311303301110302...
87/157=0,20313130020021302020331331...
88/157=0,20331331203131300200213020...
89/157=0,21010132332301232320100103...
90/157=0,21023000122011231033321132...
91/157=0,21101201311121223213202221...
92/157=0,21120003100231221333023310...
93/157=0,21132210230001220112310333...
94/157=0,21211012013111212232132022...
95/157=0,21223213202221211012013111...
96/157=0,21302020331331203131300200...
97/157=0,21320222121101201311121223...
98/157=0,21333023310211200031002312...
99/157=0,22011231033321132210230001...
100/157=0,22030032223031130330111030...
101/157=0,22102300012201123103332113...
102/157=0,22121101201311121223213202...
103/157=0,22133302331021120003100231...
104/157=0,22212110120131112122321320...
105/157=0,22230311303301110302203003...
106/157=0,22303113033011103022030032...
107/157=0,22321320222121101201311121...
108/157=0,23000122011231033321132210...
109/157=0,23012323201001032101013233...
110/157=0,23031130330111030220300322...
111/157=0,23103332113221023000122011...
112/157=0,23122133302331021120003100...
113/157=0,23201001032101013233230123...
114/157=0,23213202221211012013111212...
115/157=0,23232010010321010132332301...
116/157=0,23310211200031002312213330...
117/157=0,23323012323201001032101013...
118/157=0,30001220112310333211322102...
119/157=0,30020021302020331331203131...
120/157=0,30032223031130330111030220...
121/157=0,30111030220300322230311303...
122/157=0,30123232010010321010132332...
123/157=0,30202033133120313130020021...
124/157=0,30220300322230311303301110...
125/157=0,30233102112000310023122133...
126/157=0,30311303301110302203003222...
127/157=0,30330111030220300322230311...
128/157=0,31002312213330233102112000...
129/157=0,31021120003100231221333023...
130/157=0,31033321132210230001220112...
131/157=0,31112122321320222121101201...
132/157=0,31130330111030220300322230...
133/157=0,31203131300200213020203313...
134/157=0,31221333023310211200031002...
135/157=0,31300200213020203313312031...
136/157=0,31313002002130202033133120...
137/157=0,31331203131300200213020203...
138/157=0,32010010321010132332301232...
139/157=0,32022212110120131112122321...
140/157=0,32101013233230123232010010...
141/157=0,32113221023000122011231033...
142/157=0,32132022212110120131112122...
143/157=0,32210230001220112310333211...
144/157=0,32223031130330111030220300...
145/157=0,32301232320100103210101323...
146/157=0,32320100103210101323323012...
147/157=0,32332301232320100103210101...
148/157=0,33011103022030032223031130...
149/157=0,33023310211200031002312213...
150/157=0,33102112000310023122133302...
151/157=0,33120313130020021302020331...
152/157=0,33133120313130020021302020...
153/157=0,33211322102300012201123103...
154/157=0,33230123232010010321010132...
155/157=0,33302331021120003100231221...
156/157=0,33321132210230001220112310...
On remarque que le produit du nombre de périodes (6) et de leurs longueurs (26) est égal à 156 et donc au premier -1.