Liste des fractions de n/89 en base 5.
Il existe 2 périodes de 44 chiffres pour n/89 en base 5.
Pour toutes les fractions de n/89 en base 5, la période de 1/89 revient alors 44 fois (en orange)
1/89=0,00120024010302110422134432442043414233402231...
2/89=0,00240103021104221344324420434142334022310012...
3/89=0,00410132031411332322014403431241303311212243...
4/89=0,01030211042213443244204341423340223100120024...
5/89=0,01200240103021104221344324420434142334022310...
6/89=0,01320314113323220144034312413033112122430041...
7/89=0,01440343124130331121224300410132031411332322...
8/89=0,02110422134432442043414233402231001200240103...
9/89=0,02231001200240103021104221344324420434142334...
10/89=0,02401030211042213443244204341423340223100120...
11/89=0,03021104221344324420434142334022310012002401...
12/89=0,03141133232201440343124130331121224300410132...
13/89=0,03311212243004101320314113323220144034312413...
14/89=0,03431241303311212243004101320314113323220144...
15/89=0,04101320314113323220144034312413033112122430...
16/89=0,04221344324420434142334022310012002401030211...
17/89=0,04341423340223100120024010302110422134432442...
18/89=0,10012002401030211042213443244204341423340223...
19/89=0,10132031411332322014403431241303311212243004...
20/89=0,10302110422134432442043414233402231001200240...
21/89=0,10422134432442043414233402231001200240103021...
22/89=0,11042213443244204341423340223100120024010302...
23/89=0,11212243004101320314113323220144034312413033...
24/89=0,11332322014403431241303311212243004101320314...
25/89=0,12002401030211042213443244204341423340223100...
26/89=0,12122430041013203141133232201440343124130331...
27/89=0,12243004101320314113323220144034312413033112...
28/89=0,12413033112122430041013203141133232201440343...
29/89=0,13033112122430041013203141133232201440343124...
30/89=0,13203141133232201440343124130331121224300410...
31/89=0,13323220144034312413033112122430041013203141...
32/89=0,13443244204341423340223100120024010302110422...
33/89=0,14113323220144034312413033112122430041013203...
34/89=0,14233402231001200240103021104221344324420434...
35/89=0,14403431241303311212243004101320314113323220...
36/89=0,20024010302110422134432442043414233402231001...
37/89=0,20144034312413033112122430041013203141133232...
38/89=0,20314113323220144034312413033112122430041013...
39/89=0,20434142334022310012002401030211042213443244...
40/89=0,21104221344324420434142334022310012002401030...
41/89=0,21224300410132031411332322014403431241303311...
42/89=0,21344324420434142334022310012002401030211042...
43/89=0,22014403431241303311212243004101320314113323...
44/89=0,22134432442043414233402231001200240103021104...
45/89=0,22310012002401030211042213443244204341423340...
46/89=0,22430041013203141133232201440343124130331121...
47/89=0,23100120024010302110422134432442043414233402...
48/89=0,23220144034312413033112122430041013203141133...
49/89=0,23340223100120024010302110422134432442043414...
50/89=0,24010302110422134432442043414233402231001200...
51/89=0,24130331121224300410132031411332322014403431...
52/89=0,24300410132031411332322014403431241303311212...
53/89=0,24420434142334022310012002401030211042213443...
54/89=0,30041013203141133232201440343124130331121224...
55/89=0,30211042213443244204341423340223100120024010...
56/89=0,30331121224300410132031411332322014403431241...
57/89=0,31001200240103021104221344324420434142334022...
58/89=0,31121224300410132031411332322014403431241303...
59/89=0,31241303311212243004101320314113323220144034...
60/89=0,31411332322014403431241303311212243004101320...
61/89=0,32031411332322014403431241303311212243004101...
62/89=0,32201440343124130331121224300410132031411332...
63/89=0,32322014403431241303311212243004101320314113...
64/89=0,32442043414233402231001200240103021104221344...
65/89=0,33112122430041013203141133232201440343124130...
66/89=0,33232201440343124130331121224300410132031411...
67/89=0,33402231001200240103021104221344324420434142...
68/89=0,34022310012002401030211042213443244204341423...
69/89=0,34142334022310012002401030211042213443244204...
70/89=0,34312413033112122430041013203141133232201440...
71/89=0,34432442043414233402231001200240103021104221...
72/89=0,40103021104221344324420434142334022310012002...
73/89=0,40223100120024010302110422134432442043414233...
74/89=0,40343124130331121224300410132031411332322014...
75/89=0,41013203141133232201440343124130331121224300...
76/89=0,41133232201440343124130331121224300410132031...
77/89=0,41303311212243004101320314113323220144034312...
78/89=0,41423340223100120024010302110422134432442043...
79/89=0,42043414233402231001200240103021104221344324...
80/89=0,42213443244204341423340223100120024010302110...
81/89=0,42334022310012002401030211042213443244204341...
82/89=0,43004101320314113323220144034312413033112122...
83/89=0,43124130331121224300410132031411332322014403...
84/89=0,43244204341423340223100120024010302110422134...
85/89=0,43414233402231001200240103021104221344324420...
86/89=0,44034312413033112122430041013203141133232201...
87/89=0,44204341423340223100120024010302110422134432...
88/89=0,44324420434142334022310012002401030211042213...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (44) est égal à 88 et donc au premier -1.