Liste des fractions de n/139 en base 6.

Il existe 6 périodes de 23 chiffres pour n/139 en base 6.

Pour toutes les fractions de n/139 en base 6, la période de 1/139 revient alors 23 fois (en orange)

1/139=0,00131535322432415221245...

2/139=0,00303515045305234442534...

3/139=0,00435454412142054104223...

4/139=0,01011434135014513325512...

5/139=0,01143413501451332551201...

6/139=0,01315353224324152212450...

7/139=0,01451332551201011434135...

8/139=0,02023312314033431055424...

9/139=0,02155252040510250321113...

10/139=0,02331231403343105542402...

11/139=0,02503211130215525204051...

12/139=0,03035150453052344425340...

13/139=0,03211130215525204051025...

14/139=0,03343105542402023312314...

15/139=0,03515045305234442534003...

16/139=0,04051025032111302155252...

17/139=0,04223004354544121420541...

18/139=0,04354544121420541042230...

19/139=0,04530523444253400303515...

20/139=0,05102503211130215525204...

21/139=0,05234442534003035150453...

22/139=0,05410422300435454412142...

23/139=0,05542402023312314033431...

24/139=0,10114341350145133255120...

25/139=0,10250321113021552520405...

26/139=0,10422300435454412142054...

27/139=0,10554240202331231403343...

28/139=0,11130215525204051025032...

29/139=0,11302155252040510250321...

30/139=0,11434135014513325512010...

31/139=0,12010114341350145133255...

32/139=0,12142054104223004354544...

33/139=0,12314033431055424020233...

34/139=0,12450013153532243241522...

35/139=0,13021552520405102503211...

36/139=0,13153532243241522124500...

37/139=0,13325512010114341350145...

38/139=0,13501451332551201011434...

39/139=0,14033431055424020233123...

40/139=0,14205410422300435454412...

41/139=0,14341350145133255120101...

42/139=0,14513325512010114341350...

43/139=0,15045305234442534003035...

44/139=0,15221245001315353224324...

45/139=0,15353224324152212450013...

46/139=0,15525204051025032111302...

47/139=0,20101143413501451332551...

48/139=0,20233123140334310554240...

49/139=0,20405102503211130215525...

50/139=0,20541042230043545441214...

51/139=0,21113021552520405102503...

52/139=0,21245001315353224324152...

53/139=0,21420541042230043545441...

54/139=0,21552520405102503211130...

55/139=0,22124500131535322432415...

56/139=0,22300435454412142054104...

57/139=0,22432415221245001315353...

58/139=0,23004354544121420541042...

59/139=0,23140334310554240202331...

60/139=0,23312314033431055424020...

61/139=0,23444253400303515045305...

62/139=0,24020233123140334310554...

63/139=0,24152212450013153532243...

64/139=0,24324152212450013153532...

65/139=0,24500131535322432415221...

66/139=0,25032111302155252040510...

67/139=0,25204051025032111302155...

68/139=0,25340030351504530523444...

69/139=0,25512010114341350145133...

70/139=0,30043545441214205410422...

71/139=0,30215525204051025032111...

72/139=0,30351504530523444253400...

73/139=0,30523444253400303515045...

74/139=0,31055424020233123140334...

75/139=0,31231403343105542402023...

76/139=0,31403343105542402023312...

77/139=0,31535322432415221245001...

78/139=0,32111302155252040510250...

79/139=0,32243241522124500131535...

80/139=0,32415221245001315353224...

81/139=0,32551201011434135014513...

82/139=0,33123140334310554240202...

83/139=0,33255120101143413501451...

84/139=0,33431055424020233123140...

85/139=0,34003035150453052344425...

86/139=0,34135014513325512010114...

87/139=0,34310554240202331231403...

88/139=0,34442534003035150453052...

89/139=0,35014513325512010114341...

90/139=0,35150453052344425340030...

91/139=0,35322432415221245001315...

92/139=0,35454412142054104223004...

93/139=0,40030351504530523444253...

94/139=0,40202331231403343105542...

95/139=0,40334310554240202331231...

96/139=0,40510250321113021552520...

97/139=0,41042230043545441214205...

98/139=0,41214205410422300435454...

99/139=0,41350145133255120101143...

100/139=0,41522124500131535322432...

101/139=0,42054104223004354544121...

102/139=0,42230043545441214205410...

103/139=0,42402023312314033431055...

104/139=0,42534003035150453052344...

105/139=0,43105542402023312314033...

106/139=0,43241522124500131535322...

107/139=0,43413501451332551201011...

108/139=0,43545441214205410422300...

109/139=0,44121420541042230043545...

110/139=0,44253400303515045305234...

111/139=0,44425340030351504530523...

112/139=0,45001315353224324152212...

113/139=0,45133255120101143413501...

114/139=0,45305234442534003035150...

115/139=0,45441214205410422300435...

116/139=0,50013153532243241522124...

117/139=0,50145133255120101143413...

118/139=0,50321113021552520405102...

119/139=0,50453052344425340030351...

120/139=0,51025032111302155252040...

121/139=0,51201011434135014513325...

122/139=0,51332551201011434135014...

123/139=0,51504530523444253400303...

124/139=0,52040510250321113021552...

125/139=0,52212450013153532243241...

126/139=0,52344425340030351504530...

127/139=0,52520405102503211130215...

128/139=0,53052344425340030351504...

129/139=0,53224324152212450013153...

130/139=0,53400303515045305234442...

131/139=0,53532243241522124500131...

132/139=0,54104223004354544121420...

133/139=0,54240202331231403343105...

134/139=0,54412142054104223004354...

135/139=0,54544121420541042230043...

136/139=0,55120101143413501451332...

137/139=0,55252040510250321113021...

138/139=0,55424020233123140334310...

On remarque que le produit du nombre de périodes (6) et de leurs longueurs (23) est égal à 138 et donc au premier -1.