Liste des fractions de n/191 en base 6.
Il existe 10 périodes de 19 chiffres pour n/191 en base 6.
Pour toutes les fractions de n/191 en base 6, la période de 1/191 revient alors 19 fois (en orange)
1/191=0,0010441344500535321...
2/191=0,0021323133401515042...
3/191=0,0032204522302454403...
4/191=0,0043050311203434124...
5/191=0,0053532100104413445...
6/191=0,0104413445005353210...
7/191=0,0115255233510332531...
8/191=0,0130141022411312252...
9/191=0,0141022411312252013...
10/191=0,0151504200213231334...
11/191=0,0202345545114211055...
12/191=0,0213231334015150420...
13/191=0,0224113122520130141...
14/191=0,0234554511421105502...
15/191=0,0245440300322045223...
16/191=0,0300322045223024544...
17/191=0,0311203434124004305...
18/191=0,0322045223024544030...
19/191=0,0332531011525523351...
20/191=0,0343412400430503112...
21/191=0,0354254145331442433...
22/191=0,0405135534232422154...
23/191=0,0420021323133401515...
24/191=0,0430503112034341240...
25/191=0,0441344500535321001...
26/191=0,0452230245440300322...
27/191=0,0503112034341240043...
28/191=0,0513553423242215404...
29/191=0,0524435212143155125...
30/191=0,0535321001044134450...
31/191=0,0550202345545114211...
32/191=0,1001044134450053532...
33/191=0,1011525523351033253...
34/191=0,1022411312252013014...
35/191=0,1033253101152552335...
36/191=0,1044134450053532100...
37/191=0,1055020234554511421...
38/191=0,1105502023455451142...
39/191=0,1120343412400430503...
40/191=0,1131225201301410224...
41/191=0,1142110550202345545...
42/191=0,1152552335103325310...
43/191=0,1203434124004305031...
44/191=0,1214315512505244352...
45/191=0,1225201301410224113...
46/191=0,1240043050311203434...
47/191=0,1250524435212143155...
48/191=0,1301410224113122520...
49/191=0,1312252013014102241...
50/191=0,1323133401515042002...
51/191=0,1334015150420021323...
52/191=0,1344500535321001044...
53/191=0,1355342324221540405...
54/191=0,1410224113122520130...
55/191=0,1421105502023455451...
56/191=0,1431551250524435212...
57/191=0,1442433035425414533...
58/191=0,1453314424330354254...
59/191=0,1504200213231334015...
60/191=0,1515042002132313340...
61/191=0,1525523351033253101...
62/191=0,1540405135534232422...
63/191=0,1551250524435212143...
64/191=0,2002132313340151504...
65/191=0,2013014102241131225...
66/191=0,2023455451142110550...
67/191=0,2034341240043050311...
68/191=0,2045223024544030032...
69/191=0,2100104413445005353...
70/191=0,2110550202345545114...
71/191=0,2121431551250524435...
72/191=0,2132313340151504200...
73/191=0,2143155125052443521...
74/191=0,2154040513553423242...
75/191=0,2204522302454403003...
76/191=0,2215404051355342324...
77/191=0,2230245440300322045...
78/191=0,2241131225201301410...
79/191=0,2252013014102241131...
80/191=0,2302454403003220452...
81/191=0,2313340151504200213...
82/191=0,2324221540405135534...
83/191=0,2335103325310115255...
84/191=0,2345545114211055020...
85/191=0,2400430503112034341...
86/191=0,2411312252013014102...
87/191=0,2422154040513553423...
88/191=0,2433035425414533144...
89/191=0,2443521214315512505...
90/191=0,2454403003220452230...
91/191=0,2505244352121431551...
92/191=0,2520130141022411312...
93/191=0,2531011525523351033...
94/191=0,2541453314424330354...
95/191=0,2552335103325310115...
96/191=0,3003220452230245440...
97/191=0,3014102241131225201...
98/191=0,3024544030032204522...
99/191=0,3035425414533144243...
100/191=0,3050311203434124004...
101/191=0,3101152552335103325...
102/191=0,3112034341240043050...
103/191=0,3122520130141022411...
104/191=0,3133401515042002132...
105/191=0,3144243303542541453...
106/191=0,3155125052443521214...
107/191=0,3210010441344500535...
108/191=0,3220452230245440300...
109/191=0,3231334015150420021...
110/191=0,3242215404051355342...
111/191=0,3253101152552335103...
112/191=0,3303542541453314424...
113/191=0,3314424330354254145...
114/191=0,3325310115255233510...
115/191=0,3340151504200213231...
116/191=0,3351033253101152552...
117/191=0,3401515042002132313...
118/191=0,3412400430503112034...
119/191=0,3423242215404051355...
120/191=0,3434124004305031120...
121/191=0,3445005353210010441...
122/191=0,3455451142110550202...
123/191=0,3510332531011525523...
124/191=0,3521214315512505244...
125/191=0,3532100104413445005...
126/191=0,3542541453314424330...
127/191=0,3553423242215404051...
128/191=0,4004305031120343412...
129/191=0,4015150420021323133...
130/191=0,4030032204522302454...
131/191=0,4040513553423242215...
132/191=0,4051355342324221540...
133/191=0,4102241131225201301...
134/191=0,4113122520130141022...
135/191=0,4124004305031120343...
136/191=0,4134450053532100104...
137/191=0,4145331442433035425...
138/191=0,4200213231334015150...
139/191=0,4211055020234554511...
140/191=0,4221540405135534232...
141/191=0,4232422154040513553...
142/191=0,4243303542541453314...
143/191=0,4254145331442433035...
144/191=0,4305031120343412400...
145/191=0,4315512505244352121...
146/191=0,4330354254145331442...
147/191=0,4341240043050311203...
148/191=0,4352121431551250524...
149/191=0,4403003220452230245...
150/191=0,4413445005353210010...
151/191=0,4424330354254145331...
152/191=0,4435212143155125052...
153/191=0,4450053532100104413...
154/191=0,4500535321001044134...
155/191=0,4511421105502023455...
156/191=0,4522302454403003220...
157/191=0,4533144243303542541...
158/191=0,4544030032204522302...
159/191=0,4554511421105502023...
160/191=0,5005353210010441344...
161/191=0,5020234554511421105...
162/191=0,5031120343412400430...
163/191=0,5042002132313340151...
164/191=0,5052443521214315512...
165/191=0,5103325310115255233...
166/191=0,5114211055020234554...
167/191=0,5125052443521214315...
168/191=0,5135534232422154040...
169/191=0,5150420021323133401...
170/191=0,5201301410224113122...
171/191=0,5212143155125052443...
172/191=0,5223024544030032204...
173/191=0,5233510332531011525...
174/191=0,5244352121431551250...
175/191=0,5255233510332531011...
176/191=0,5310115255233510332...
177/191=0,5321001044134450053...
178/191=0,5331442433035425414...
179/191=0,5342324221540405135...
180/191=0,5353210010441344500...
181/191=0,5404051355342324221...
182/191=0,5414533144243303542...
183/191=0,5425414533144243303...
184/191=0,5440300322045223024...
185/191=0,5451142110550202345...
186/191=0,5502023455451142110...
187/191=0,5512505244352121431...
188/191=0,5523351033253101152...
189/191=0,5534232422154040513...
190/191=0,5545114211055020234...
On remarque que le produit du nombre de périodes (10) et de leurs longueurs (19) est égal à 190 et donc au premier -1.