Liste des fractions de n/109 en base 7.
Il existe 4 périodes de 27 chiffres pour n/109 en base 7.
Pour toutes les fractions de n/109 en base 7, la période de 1/109 revient alors 27 fois (en orange)
1/109=0,003101230402150651261414455...
2/109=0,006202461104331632553132243...
3/109=0,012304021506512614144550031...
4/109=0,015405252211663565436264516...
5/109=0,021506512614144550031012304...
6/109=0,024611043316325531322430062...
7/109=0,031012304021506512614144550...
8/109=0,034113534423660464205562335...
9/109=0,040215065126141445500310123...
10/109=0,043316325531322430062024611...
11/109=0,046420556233503411353442366...
12/109=0,052522116635654362645160154...
13/109=0,055623350341135344236604642...
14/109=0,062024611043316325531322430...
15/109=0,065126141445500310123040215...
16/109=0,101230402150651261414455003...
17/109=0,104331632553132243006202461...
18/109=0,110433163255313224300620246...
19/109=0,113534423660464205562335034...
20/109=0,116635654362645160154052522...
21/109=0,123040215065126141445500310...
22/109=0,126141445500310123040215065...
23/109=0,132243006202461104331632553...
24/109=0,135344236604642055623350341...
25/109=0,141445500310123040215065126...
26/109=0,144550031012304021506512614...
27/109=0,150651261414455003101230402...
28/109=0,154052522116635654362645160...
29/109=0,160154052522116635654362645...
30/109=0,163255313224300620246110433...
31/109=0,166356543626451601540525221...
32/109=0,202461104331632553132243006...
33/109=0,205562335034113534423660464...
34/109=0,211663565436264516015405252...
35/109=0,215065126141445500310123040...
36/109=0,221166356543626451601540525...
37/109=0,224300620246110433163255313...
38/109=0,230402150651261414455003101...
39/109=0,233503411353442366046420556...
40/109=0,236604642055623350341135344...
41/109=0,243006202461104331632553132...
42/109=0,246110433163255313224300620...
43/109=0,252211663565436264516015405...
44/109=0,255313224300620246110433163...
45/109=0,261414455003101230402150651...
46/109=0,264516015405252211663565436...
47/109=0,300620246110433163255313224...
48/109=0,304021506512614144550031012...
49/109=0,310123040215065126141445500...
50/109=0,313224300620246110433163255...
51/109=0,316325531322430062024611043...
52/109=0,322430062024611043316325531...
53/109=0,325531322430062024611043316...
54/109=0,331632553132243006202461104...
55/109=0,335034113534423660464205562...
56/109=0,341135344236604642055623350...
57/109=0,344236604642055623350341135...
58/109=0,350341135344236604642055623...
59/109=0,353442366046420556233503411...
60/109=0,356543626451601540525221166...
61/109=0,362645160154052522116635654...
62/109=0,366046420556233503411353442...
63/109=0,402150651261414455003101230...
64/109=0,405252211663565436264516015...
65/109=0,411353442366046420556233503...
66/109=0,414455003101230402150651261...
67/109=0,420556233503411353442366046...
68/109=0,423660464205562335034113534...
69/109=0,430062024611043316325531322...
70/109=0,433163255313224300620246110...
71/109=0,436264516015405252211663565...
72/109=0,442366046420556233503411353...
73/109=0,445500310123040215065126141...
74/109=0,451601540525221166356543626...
75/109=0,455003101230402150651261414...
76/109=0,461104331632553132243006202...
77/109=0,464205562335034113534423660...
78/109=0,500310123040215065126141445...
79/109=0,503411353442366046420556233...
80/109=0,506512614144550031012304021...
81/109=0,512614144550031012304021506...
82/109=0,516015405252211663565436264...
83/109=0,522116635654362645160154052...
84/109=0,525221166356543626451601540...
85/109=0,531322430062024611043316325...
86/109=0,534423660464205562335034113...
87/109=0,540525221166356543626451601...
88/109=0,543626451601540525221166356...
89/109=0,550031012304021506512614144...
90/109=0,553132243006202461104331632...
91/109=0,556233503411353442366046420...
92/109=0,562335034113534423660464205...
93/109=0,565436264516015405252211663...
94/109=0,601540525221166356543626451...
95/109=0,604642055623350341135344236...
96/109=0,611043316325531322430062024...
97/109=0,614144550031012304021506512...
98/109=0,620246110433163255313224300...
99/109=0,623350341135344236604642055...
100/109=0,626451601540525221166356543...
101/109=0,632553132243006202461104331...
102/109=0,635654362645160154052522116...
103/109=0,642055623350341135344236604...
104/109=0,645160154052522116635654362...
105/109=0,651261414455003101230402150...
106/109=0,654362645160154052522116635...
107/109=0,660464205562335034113534423...
108/109=0,663565436264516015405252211...
On remarque que le produit du nombre de périodes (4) et de leurs longueurs (27) est égal à 108 et donc au premier -1.