Liste des fractions de n/97 en base 8.
Il existe 6 périodes de 16 chiffres pour n/97 en base 8.
Pour toutes les fractions de n/97 en base 8, la période de 1/97 revient alors 16 fois (en orange)
1/97=0,0052164077256137...
2/97=0,0124350176534276...
3/97=0,0176534276012435...
4/97=0,0250720375270574...
5/97=0,0323104474546733...
6/97=0,0375270574025072...
7/97=0,0447454673303231...
8/97=0,0521640772561370...
9/97=0,0574025072037527...
10/97=0,0646211171315666...
11/97=0,0720375270574025...
12/97=0,0772561370052164...
13/97=0,1044745467330323...
14/97=0,1117131566606462...
15/97=0,1171315666064621...
16/97=0,1243501765342760...
17/97=0,1315666064621117...
18/97=0,1370052164077256...
19/97=0,1442236263355415...
20/97=0,1514422362633554...
21/97=0,1566606462111713...
22/97=0,1640772561370052...
23/97=0,1713156660646211...
24/97=0,1765342760124350...
25/97=0,2037527057402507...
26/97=0,2111713156660646...
27/97=0,2164077256137005...
28/97=0,2236263355415144...
29/97=0,2310447454673303...
30/97=0,2362633554151442...
31/97=0,2435017653427601...
32/97=0,2507203752705740...
33/97=0,2561370052164077...
34/97=0,2633554151442236...
35/97=0,2705740250720375...
36/97=0,2760124350176534...
37/97=0,3032310447454673...
38/97=0,3104474546733032...
39/97=0,3156660646211171...
40/97=0,3231044745467330...
41/97=0,3303231044745467...
42/97=0,3355415144223626...
43/97=0,3427601243501765...
44/97=0,3501765342760124...
45/97=0,3554151442236263...
46/97=0,3626335541514422...
47/97=0,3700521640772561...
48/97=0,3752705740250720...
49/97=0,4025072037527057...
50/97=0,4077256137005216...
51/97=0,4151442236263355...
52/97=0,4223626335541514...
53/97=0,4276012435017653...
54/97=0,4350176534276012...
55/97=0,4422362633554151...
56/97=0,4474546733032310...
57/97=0,4546733032310447...
58/97=0,4621117131566606...
59/97=0,4673303231044745...
60/97=0,4745467330323104...
61/97=0,5017653427601243...
62/97=0,5072037527057402...
63/97=0,5144223626335541...
64/97=0,5216407725613700...
65/97=0,5270574025072037...
66/97=0,5342760124350176...
67/97=0,5415144223626335...
68/97=0,5467330323104474...
69/97=0,5541514422362633...
70/97=0,5613700521640772...
71/97=0,5666064621117131...
72/97=0,5740250720375270...
73/97=0,6012435017653427...
74/97=0,6064621117131566...
75/97=0,6137005216407725...
76/97=0,6211171315666064...
77/97=0,6263355415144223...
78/97=0,6335541514422362...
79/97=0,6407725613700521...
80/97=0,6462111713156660...
81/97=0,6534276012435017...
82/97=0,6606462111713156...
83/97=0,6660646211171315...
84/97=0,6733032310447454...
85/97=0,7005216407725613...
86/97=0,7057402507203752...
87/97=0,7131566606462111...
88/97=0,7203752705740250...
89/97=0,7256137005216407...
90/97=0,7330323104474546...
91/97=0,7402507203752705...
92/97=0,7454673303231044...
93/97=0,7527057402507203...
94/97=0,7601243501765342...
95/97=0,7653427601243501...
96/97=0,7725613700521640...
On remarque que le produit du nombre de périodes (6) et de leurs longueurs (16) est égal à 96 et donc au premier -1.