abond_30_75

Liste des premiers dont l'abondance est 30,75...

Les premiers listés ci-dessous sont inférieurs à 501089 et triés par ordre croissant d'abondance.

Le pic situé à 30,75 contient 133 premiers avec p - 1 multiple de 2, 3 et 13.

Pour les premiers ne contenant que ces facteurs, l 'abondance est égale à 30,769230769 et se calcule à l'aide de 4/ 13.

Premier
Abondance
Décomposition du premier - 1
250693
30,750083768
2^2 * 3 * 13 * 1607
376039
30,750083768
2 * 3^2 * 13 * 1607
252877
30,750249134
2^2 * 3 * 13 * 1621
259429
30,750728526
2^2 * 3 * 13 * 1663
130027
30,750772922
2 * 3 * 13 * 1667
130183
30,750795041
2 * 3 * 13 * 1669
132367
30,751099225
2 * 3 * 13 * 1697
397099
30,751099225
2 * 3^2 * 13 * 1697
132523
30,751120569
2 * 3 * 13 * 1699
397567
30,751120569
2 * 3^2 * 13 * 1699
133303
30,751226538
2 * 3 * 13 * 1709
268789
30,751372829
2^2 * 3 * 13 * 1723
135799
30,75155746
2 * 3 * 13 * 1741
271597
30,75155746
2^2 * 3 * 13 * 1741
272533
30,751618159
2^2 * 3 * 13 * 1747
410203
30,751678441
2 * 3^2 * 13 * 1753
277213
30,751915501
2^2 * 3 * 13 * 1777
415819
30,751915501
2 * 3^2 * 13 * 1777
278149
30,751973769
2^2 * 3 * 13 * 1783
139387
30,752012397
2 * 3 * 13 * 1787
280957
30,752146244
2^2 * 3 * 13 * 1801
426583
30,75235242
2 * 3^2 * 13 * 1823
432199
30,752571738
2 * 3^2 * 13 * 1847
290317
30,752697061
2^2 * 3 * 13 * 1861
291253
30,752750196
2^2 * 3 * 13 * 1867
291877
30,752785429
2^2 * 3 * 13 * 1871
146407
30,752837998
2 * 3 * 13 * 1877
146563
30,752855447
2 * 3 * 13 * 1879
439687
30,752855447
2 * 3^2 * 13 * 1879
442027
30,752942135
2 * 3^2 * 13 * 1889
148279
30,753044956
2 * 3 * 13 * 1901
296557
30,753044956
2^2 * 3 * 13 * 1901
148747
30,753095882
2 * 3 * 13 * 1907
301237
30,753296419
2^2 * 3 * 13 * 1931
304357
30,753459764
2^2 * 3 * 13 * 1951
311533
30,753823042
2^2 * 3 * 13 * 1997
312469
30,753869196
2^2 * 3 * 13 * 2003
468703
30,753869196
2 * 3^2 * 13 * 2003
313717
30,753930306
2^2 * 3 * 13 * 2011
157327
30,753975821
2 * 3 * 13 * 2017
316213
30,75405108
2^2 * 3 * 13 * 2027
474319
30,75405108
2 * 3^2 * 13 * 2027
474787
30,754066042
2 * 3^2 * 13 * 2029
320269
30,754243321
2^2 * 3 * 13 * 2053
321829
30,75431597
2^2 * 3 * 13 * 2063
482743
30,75431597
2 * 3^2 * 13 * 2063
324637
30,754444978
2^2 * 3 * 13 * 2081
324949
30,754459175
2^2 * 3 * 13 * 2083
487423
30,754459175
2 * 3^2 * 13 * 2083
162787
30,754487487
2 * 3 * 13 * 2087
488827
30,754501602
2 * 3^2 * 13 * 2089
491167
30,754571774
2 * 3^2 * 13 * 2099
329317
30,754655103
2^2 * 3 * 13 * 2111
329629
30,754668899
2^2 * 3 * 13 * 2113
494443
30,754668899
2 * 3^2 * 13 * 2113
166063
30,754778336
2 * 3 * 13 * 2129
166219
30,7547919
2 * 3 * 13 * 2131
333997
30,75485934
2^2 * 3 * 13 * 2141
168559
30,754992347
2 * 3 * 13 * 2161
172147
30,755289115
2 * 3 * 13 * 2207
344293
30,755289115
2^2 * 3 * 13 * 2207
345229
30,755326914
2^2 * 3 * 13 * 2213
174487
30,755476084
2 * 3 * 13 * 2237
351157
30,755561631
2^2 * 3 * 13 * 2251
353653
30,755658105
2^2 * 3 * 13 * 2267
176983
30,755670068
2 * 3 * 13 * 2269
179167
30,755835371
2 * 3 * 13 * 2297
180259
30,75591652
2 * 3 * 13 * 2311
363949
30,756042072
2^2 * 3 * 13 * 2333
182443
30,756075904
2 * 3 * 13 * 2339
182599
30,756087142
2 * 3 * 13 * 2341
183067
30,756120743
2 * 3 * 13 * 2347
366133
30,756120743
2^2 * 3 * 13 * 2347
369877
30,756253447
2^2 * 3 * 13 * 2371
370813
30,756286204
2^2 * 3 * 13 * 2377
186343
30,756351225
2 * 3 * 13 * 2389
187123
30,756404912
2 * 3 * 13 * 2399
188527
30,75650043
2 * 3 * 13 * 2417
380797
30,756625595
2^2 * 3 * 13 * 2441
191803
30,756717865
2 * 3 * 13 * 2459
386413
30,756808795
2^2 * 3 * 13 * 2477
197419
30,757073823
2 * 3 * 13 * 2531
394837
30,757073823
2^2 * 3 * 13 * 2531
198043
30,757112128
2 * 3 * 13 * 2539
396709
30,75713119
2^2 * 3 * 13 * 2543
198823
30,75715967
2 * 3 * 13 * 2549
199447
30,757197437
2 * 3 * 13 * 2557
201163
30,757300086
2 * 3 * 13 * 2579
202099
30,757355342
2 * 3 * 13 * 2591
404197
30,757355342
2^2 * 3 * 13 * 2591
204439
30,757491269
2 * 3 * 13 * 2621
410749
30,757544772
2^2 * 3 * 13 * 2633
206467
30,757606579
2 * 3 * 13 * 2647
416677
30,757711027
2^2 * 3 * 13 * 2671
208807
30,757736847
2 * 3 * 13 * 2677
209743
30,75778814
2 * 3 * 13 * 2689
210523
30,757830536
2 * 3 * 13 * 2699
423229
30,757889365
2^2 * 3 * 13 * 2713
213019
30,757964116
2 * 3 * 13 * 2731
213799
30,75800522
2 * 3 * 13 * 2741
427597
30,75800522
2^2 * 3 * 13 * 2741
429469
30,758054151
2^2 * 3 * 13 * 2753
215827
30,7581107
2 * 3 * 13 * 2767
216607
30,758150744
2 * 3 * 13 * 2777
435397
30,758206323
2^2 * 3 * 13 * 2791
218479
30,758245681
2 * 3 * 13 * 2801
436957
30,758245681
2^2 * 3 * 13 * 2801
442573
30,758385076
2^2 * 3 * 13 * 2837
222379
30,758438335
2 * 3 * 13 * 2851
224563
30,758543298
2 * 3 * 13 * 2879
451933
30,758609702
2^2 * 3 * 13 * 2897
452869
30,758631654
2^2 * 3 * 13 * 2903
226903
30,758653516
2 * 3 * 13 * 2909
455053
30,758682524
2^2 * 3 * 13 * 2917
228307
30,758718562
2 * 3 * 13 * 2927
456613
30,758718562
2^2 * 3 * 13 * 2927
230647
30,758825213
2 * 3 * 13 * 2957
233923
30,758970939
2 * 3 * 13 * 2999
468157
30,758977777
2^2 * 3 * 13 * 3001
469717
30,759011828
2^2 * 3 * 13 * 3011
235483
30,759038907
2 * 3 * 13 * 3019
471589
30,759052393
2^2 * 3 * 13 * 3023
238759
30,75917875
2 * 3 * 13 * 3061
477517
30,75917875
2^2 * 3 * 13 * 3061
478453
30,759198415
2^2 * 3 * 13 * 3067
240943
30,759269866
2 * 3 * 13 * 3089
244687
30,75942228
2 * 3 * 13 * 3137
247183
30,759521324
2 * 3 * 13 * 3169
248119
30,759557952
2 * 3 * 13 * 3181
248587
30,759576163
2 * 3 * 13 * 3187
499669
30,759624391
2^2 * 3 * 13 * 3203
254047
30,759783661
2 * 3 * 13 * 3257
257947
30,759926496
2 * 3 * 13 * 3307
,75942228
2 * 3 * 13 * 3137
247183
30,759521324
2 * 3 * 13 * 3169
248119
30,759557952
2 * 3 * 13 * 3181
248587
30,759576163
2 * 3 * 13 * 3187
499669
30,759624391
2^2 * 3 * 13 * 3203
254047
30,759783661
2 * 3 * 13 * 3257
257947
30,759926496
2 * 3 * 13 * 3307