Graphe des fractions de n/97 en base 10+97n
Le graphe est semblable pour les bases 10, 107, 204, 301, etc... et plus généralement pour toutes les bases de forme 10 + 97n . Pour le visualiser, on partage simultanément le cercle en 97 et 10 parties égales.
Pour des détails sur la génération des graphes cliquez ici.
Les points du graphe (les chiffres de la période) sont disposés dans l'ordre suivant en base 10+97n :
1-10-3-30-9-90-27-76-81-34-49-5-50-15-53-45-62-38-89-17-73-51-25-56-75-71-31-19-93-57-85-74-61-28-86-84-64-58-95-77-91-37-79-14-43-42-32-29===96-87-94-67-88-7-70-21-16-63-48-92-47-82-44-52-35-59-8-80-24-46-72-41-22-26-66-78-4-40-12-23-36-69-11-13-33-39-2-20-6-60-18-83-54-55-65-68
Et dans l'ordre inverse en base 68+97n :
1-68-65-55-54-83-18-60-6-20-2-39-33-13-11-69-36-23-12-40-4-78-66-26-22-41-72-46-24-80-8-59-35-52-44-82-47-92-48-63-16-21-70-7-88-67-94-87===96-29-32-42-43-14-79-37-91-77-95-58-64-84-86-28-61-74-85-57-93-19-31-71-75-56-25-51-73-17-89-38-62-45-53-15-50-5-49-34-81-76-27-90-9-30-3-10
Cela est normal si l'on songe que 10x68 admet 1 pour reste dans la division par 97, et qu'ils sont alors inverse dans Z97.
Pour les courageux qui voudraient vérifier, calculons 1/97 en base 10+97n (10, 107, 204, ...).
La période est la même pour tous les numérateurs, une seule ficelle suffit à les joindre tous, visitant ainsi les points de 1 à 96.