103_045

Graphe des fractions de n/103 en base 45+103n

Le graphe est semblable pour les bases 45, 148, 251, 354, etc... et plus généralement pour toutes les bases de forme 45 + 103n . Pour le visualiser, on partage simultanément le cercle en 103 et 45 parties égales.

Pour des détails sur la génération des graphes cliquez ici.

Les points du graphe (les chiffres de la période) sont disposés dans l'ordre suivant en base 45+103n :

1-45-68-73-92-20-76-21-18-89-91-78-8-51-29-69-15-57-93-65-41-94-7-6-64-99-26-37-17-44-23-5-19-31-56-48-100-71-2-90-33-43-81-40-49-42-36-75-79-53-16===102-58-35-30-11-83-27-82-85-14-12-25-95-52-74-34-88-46-10-38-62-9-96-97-39-4-77-66-86-59-80-98-84-72-47-55-3-32-101-13-70-60-22-63-54-61-67-28-24-50-87

Et dans l'ordre inverse en base 87+103n :

1-87-50-24-28-67-61-54-63-22-60-70-13-101-32-3-55-47-72-84-98-80-59-86-66-77-4-39-97-96-9-62-38-10-46-88-34-74-52-95-25-12-14-85-82-27-83-11-30-35-58===102-16-53-79-75-36-42-49-40-81-43-33-90-2-71-100-48-56-31-19-5-23-44-17-37-26-99-64-6-7-94-41-65-93-57-15-69-29-51-8-78-91-89-18-21-76-20-92-73-68-45

Cela est normal si l'on songe que 45x87 admet 1 pour reste dans la division par 103, et qu'ils sont alors inverse dans Z103.

Pour les courageux qui voudraient vérifier, calculons 1/103 en base 45+103n (45, 148, 251, ...).

La période est la même pour tous les numérateurs, une seule ficelle suffit à les joindre tous, visitant ainsi les points de 1 à 102.