Liste des fractions de n/113 en base 2.
Il existe 4 périodes de 28 chiffres pour n/113 en base 2.
Pour toutes les fractions de n/113 en base 2, la période de 1/113 revient alors 28 fois (en orange)
1/113=0,0000001001000011111101101111...
2/113=0,0000010010000111111011011110...
3/113=0,0000011011001011111001001101...
4/113=0,0000100100001111110110111100...
5/113=0,0000101101010011110100101011...
6/113=0,0000110110010111110010011010...
7/113=0,0000111111011011110000001001...
8/113=0,0001001000011111101101111000...
9/113=0,0001010001100011101011100111...
10/113=0,0001011010100111101001010110...
11/113=0,0001100011101011100111000101...
12/113=0,0001101100101111100100110100...
13/113=0,0001110101110011100010100011...
14/113=0,0001111110110111100000010010...
15/113=0,0010000111111011011110000001...
16/113=0,0010010000111111011011110000...
17/113=0,0010011010000011011001011111...
18/113=0,0010100011000111010111001110...
19/113=0,0010101100001011010100111101...
20/113=0,0010110101001111010010101100...
21/113=0,0010111110010011010000011011...
22/113=0,0011000111010111001110001010...
23/113=0,0011010000011011001011111001...
24/113=0,0011011001011111001001101000...
25/113=0,0011100010100011000111010111...
26/113=0,0011101011100111000101000110...
27/113=0,0011110100101011000010110101...
28/113=0,0011111101101111000000100100...
29/113=0,0100000110110010111110010011...
30/113=0,0100001111110110111100000010...
31/113=0,0100011000111010111001110001...
32/113=0,0100100001111110110111100000...
33/113=0,0100101011000010110101001111...
34/113=0,0100110100000110110010111110...
35/113=0,0100111101001010110000101101...
36/113=0,0101000110001110101110011100...
37/113=0,0101001111010010101100001011...
38/113=0,0101011000010110101001111010...
39/113=0,0101100001011010100111101001...
40/113=0,0101101010011110100101011000...
41/113=0,0101110011100010100011000111...
42/113=0,0101111100100110100000110110...
43/113=0,0110000101101010011110100101...
44/113=0,0110001110101110011100010100...
45/113=0,0110010111110010011010000011...
46/113=0,0110100000110110010111110010...
47/113=0,0110101001111010010101100001...
48/113=0,0110110010111110010011010000...
49/113=0,0110111100000010010000111111...
50/113=0,0111000101000110001110101110...
51/113=0,0111001110001010001100011101...
52/113=0,0111010111001110001010001100...
53/113=0,0111100000010010000111111011...
54/113=0,0111101001010110000101101010...
55/113=0,0111110010011010000011011001...
56/113=0,0111111011011110000001001000...
57/113=0,1000000100100001111110110111...
58/113=0,1000001101100101111100100110...
59/113=0,1000010110101001111010010101...
60/113=0,1000011111101101111000000100...
61/113=0,1000101000110001110101110011...
62/113=0,1000110001110101110011100010...
63/113=0,1000111010111001110001010001...
64/113=0,1001000011111101101111000000...
65/113=0,1001001101000001101100101111...
66/113=0,1001010110000101101010011110...
67/113=0,1001011111001001101000001101...
68/113=0,1001101000001101100101111100...
69/113=0,1001110001010001100011101011...
70/113=0,1001111010010101100001011010...
71/113=0,1010000011011001011111001001...
72/113=0,1010001100011101011100111000...
73/113=0,1010010101100001011010100111...
74/113=0,1010011110100101011000010110...
75/113=0,1010100111101001010110000101...
76/113=0,1010110000101101010011110100...
77/113=0,1010111001110001010001100011...
78/113=0,1011000010110101001111010010...
79/113=0,1011001011111001001101000001...
80/113=0,1011010100111101001010110000...
81/113=0,1011011110000001001000011111...
82/113=0,1011100111000101000110001110...
83/113=0,1011110000001001000011111101...
84/113=0,1011111001001101000001101100...
85/113=0,1100000010010000111111011011...
86/113=0,1100001011010100111101001010...
87/113=0,1100010100011000111010111001...
88/113=0,1100011101011100111000101000...
89/113=0,1100100110100000110110010111...
90/113=0,1100101111100100110100000110...
91/113=0,1100111000101000110001110101...
92/113=0,1101000001101100101111100100...
93/113=0,1101001010110000101101010011...
94/113=0,1101010011110100101011000010...
95/113=0,1101011100111000101000110001...
96/113=0,1101100101111100100110100000...
97/113=0,1101101111000000100100001111...
98/113=0,1101111000000100100001111110...
99/113=0,1110000001001000011111101101...
100/113=0,1110001010001100011101011100...
101/113=0,1110010011010000011011001011...
102/113=0,1110011100010100011000111010...
103/113=0,1110100101011000010110101001...
104/113=0,1110101110011100010100011000...
105/113=0,1110110111100000010010000111...
106/113=0,1111000000100100001111110110...
107/113=0,1111001001101000001101100101...
108/113=0,1111010010101100001011010100...
109/113=0,1111011011110000001001000011...
110/113=0,1111100100110100000110110010...
111/113=0,1111101101111000000100100001...
112/113=0,1111110110111100000010010000...
On remarque que le produit du nombre de périodes (4) et de leurs longueurs (28) est égal à 112 et donc au premier -1.