Liste des fractions de n/103 en base 3.
Il existe 3 périodes de 34 chiffres pour n/103 en base 3.
Pour toutes les fractions de n/103 en base 3, la période de 1/103 revient alors 34 fois (en orange)
1/103=0,0000210020021212022220122022010102...
2/103=0,0001120110120201122211021121020211...
3/103=0,0002100200212120222201220220101020...
4/103=0,0010010221011110022122120012111122...
5/103=0,0010221011110022122120012111122001...
6/103=0,0011201101202011222110211210202110...
7/103=0,0012111122001001022101111002212212...
8/103=0,0020021212022220122022010102000021...
9/103=0,0021002002121202222012202201010200...
10/103=0,0021212022220122022010102000021002...
11/103=0,0022122120012111122001001022101111...
12/103=0,0100102210111100221221200121111220...
13/103=0,0101020000210020021212022220122022...
14/103=0,0102000021002002121202222012202201...
15/103=0,0102210111100221221200121111220010...
16/103=0,0110120201122211021121020211000112...
17/103=0,0111100221221200121111220010010221...
18/103=0,0112011012020112221102112102021100...
19/103=0,0112221102112102021100011201101202...
20/103=0,0120201122211021121020211000112011...
21/103=0,0121111220010010221011110022122120...
22/103=0,0122022010102000021002002121202222...
23/103=0,0200002100200212120222201220220101...
24/103=0,0200212120222201220220101020000210...
25/103=0,0201122211021121020211000112011012...
26/103=0,0202110001120110120201122211021121...
27/103=0,0210020021212022220122022010102000...
28/103=0,0211000112011012020112221102112102...
29/103=0,0211210202110001120110120201122211...
30/103=0,0212120222201220220101020000210020...
31/103=0,0220101020000210020021212022220122...
32/103=0,0221011110022122120012111122001001...
33/103=0,0221221200121111220010010221011110...
34/103=0,0222201220220101020000210020021212...
35/103=0,1000112011012020112221102112102021...
36/103=0,1001022101111002212212001211112200...
37/103=0,1002002121202222012202201010200002...
38/103=0,1002212212001211112200100102210111...
39/103=0,1010200002100200212120222201220220...
40/103=0,1011110022122120012111122001001022...
41/103=0,1012020112221102112102021100011201...
42/103=0,1020000210020021212022220122022010...
43/103=0,1020211000112011012020112221102112...
44/103=0,1021121020211000112011012020112221...
45/103=0,1022101111002212212001211112200100...
46/103=0,1100011201101202011222110211210202...
47/103=0,1100221221200121111220010010221011...
48/103=0,1101202011222110211210202110001120...
49/103=0,1102112102021100011201101202011222...
50/103=0,1110022122120012111122001001022101...
51/103=0,1111002212212001211112200100102210...
52/103=0,1111220010010221011110022122120012...
53/103=0,1112200100102210111100221221200121...
54/103=0,1120110120201122211021121020211000...
55/103=0,1121020211000112011012020112221102...
56/103=0,1122001001022101111002212212001211...
57/103=0,1122211021121020211000112011012020...
58/103=0,1200121111220010010221011110022122...
59/103=0,1201101202011222110211210202110001...
60/103=0,1202011222110211210202110001120110...
61/103=0,1202222012202201010200002100200212...
62/103=0,1210202110001120110120201122211021...
63/103=0,1211112200100102210111100221221200...
64/103=0,1212022220122022010102000021002002...
65/103=0,1220010010221011110022122120012111...
66/103=0,1220220101020000210020021212022220...
67/103=0,1221200121111220010010221011110022...
68/103=0,1222110211210202110001120110120201...
69/103=0,2000021002002121202222012202201010...
70/103=0,2001001022101111002212212001211112...
71/103=0,2001211112200100102210111100221221...
72/103=0,2002121202222012202201010200002100...
73/103=0,2010102000021002002121202222012202...
74/103=0,2011012020112221102112102021100011...
75/103=0,2011222110211210202110001120110120...
76/103=0,2012202201010200002100200212120222...
77/103=0,2020112221102112102021100011201101...
78/103=0,2021100011201101202011222110211210...
79/103=0,2022010102000021002002121202222012...
80/103=0,2022220122022010102000021002002121...
81/103=0,2100200212120222201220220101020000...
82/103=0,2101111002212212001211112200100102...
83/103=0,2102021100011201101202011222110211...
84/103=0,2110001120110120201122211021121020...
85/103=0,2110211210202110001120110120201122...
86/103=0,2111122001001022101111002212212001...
87/103=0,2112102021100011201101202011222110...
88/103=0,2120012111122001001022101111002212...
89/103=0,2120222201220220101020000210020021...
90/103=0,2121202222012202201010200002100200...
91/103=0,2122120012111122001001022101111002...
92/103=0,2200100102210111100221221200121111...
93/103=0,2201010200002100200212120222201220...
94/103=0,2201220220101020000210020021212022...
95/103=0,2202201010200002100200212120222201...
96/103=0,2210111100221221200121111220010010...
97/103=0,2211021121020211000112011012020112...
98/103=0,2212001211112200100102210111100221...
99/103=0,2212212001211112200100102210111100...
100/103=0,2220122022010102000021002002121202...
101/103=0,2221102112102021100011201101202011...
102/103=0,2222012202201010200002100200212120...
On remarque que le produit du nombre de périodes (3) et de leurs longueurs (34) est égal à 102 et donc au premier -1.