cadre

Liste des fractions de n/79 en base 4.

Il existe 2 périodes de 39 chiffres pour n/79 en base 4.

Pour toutes les fractions de n/79 en base 4, la période de 1/79 revient alors 39 fois (en orange)

1/79=0,000303312101310222020012132302032211101...

2/79=0,001213230203221110100030331210131022202...

3/79=0,002123202311131332120103130112223233303...

4/79=0,003033121013102220200121323020322111010...

5/79=0,010003033121013102220200121323020322111...

6/79=0,010313011222323330300212320231113133212...

7/79=0,011222323330300212320231113133212010313...

8/79=0,012132302032211101000303312101310222020...

9/79=0,013102220200121323020322111010003033121...

10/79=0,020012132302032211101000303312101310222...

11/79=0,020322111010003033121013102220200121323...

12/79=0,021232023111313321201031301122232333030...

13/79=0,022202001213230203221110100030331210131...

14/79=0,023111313321201031301122232333030021232...

15/79=0,030021232023111313321201031301122232333...

16/79=0,030331210131022202001213230203221110100...

17/79=0,031301122232333030021232023111313321201...

18/79=0,032211101000303312101310222020012132302...

19/79=0,033121013102220200121323020322111010003...

20/79=0,100030331210131022202001213230203221110...

21/79=0,101000303312101310222020012132302032211...

22/79=0,101310222020012132302032211101000303312...

23/79=0,102220200121323020322111010003033121013...

24/79=0,103130112223233303002123202311131332120...

25/79=0,110100030331210131022202001213230203221...

26/79=0,111010003033121013102220200121323020322...

27/79=0,111313321201031301122232333030021232023...

28/79=0,112223233303002123202311131332120103130...

29/79=0,113133212010313011222323330300212320231...

30/79=0,120103130112223233303002123202311131332...

31/79=0,121013102220200121323020322111010003033...

32/79=0,121323020322111010003033121013102220200...

33/79=0,122232333030021232023111313321201031301...

34/79=0,123202311131332120103130112223233303002...

35/79=0,130112223233303002123202311131332120103...

36/79=0,131022202001213230203221110100030331210...

37/79=0,131332120103130112223233303002123202311...

38/79=0,132302032211101000303312101310222020012...

39/79=0,133212010313011222323330300212320231113...

40/79=0,200121323020322111010003033121013102220...

41/79=0,201031301122232333030021232023111313321...

42/79=0,202001213230203221110100030331210131022...

43/79=0,202311131332120103130112223233303002123...

44/79=0,203221110100030331210131022202001213230...

45/79=0,210131022202001213230203221110100030331...

46/79=0,211101000303312101310222020012132302032...

47/79=0,212010313011222323330300212320231113133...

48/79=0,212320231113133212010313011222323330300...

49/79=0,213230203221110100030331210131022202001...

50/79=0,220200121323020322111010003033121013102...

51/79=0,221110100030331210131022202001213230203...

52/79=0,222020012132302032211101000303312101310...

53/79=0,222323330300212320231113133212010313011...

54/79=0,223233303002123202311131332120103130112...

55/79=0,230203221110100030331210131022202001213...

56/79=0,231113133212010313011222323330300212320...

57/79=0,232023111313321201031301122232333030021...

58/79=0,232333030021232023111313321201031301122...

59/79=0,233303002123202311131332120103130112223...

60/79=0,300212320231113133212010313011222323330...

61/79=0,301122232333030021232023111313321201031...

62/79=0,302032211101000303312101310222020012132...

63/79=0,303002123202311131332120103130112223233...

64/79=0,303312101310222020012132302032211101000...

65/79=0,310222020012132302032211101000303312101...

66/79=0,311131332120103130112223233303002123202...

67/79=0,312101310222020012132302032211101000303...

68/79=0,313011222323330300212320231113133212010...

69/79=0,313321201031301122232333030021232023111...

70/79=0,320231113133212010313011222323330300212...

71/79=0,321201031301122232333030021232023111313...

72/79=0,322111010003033121013102220200121323020...

73/79=0,323020322111010003033121013102220200121...

74/79=0,323330300212320231113133212010313011222...

75/79=0,330300212320231113133212010313011222323...

76/79=0,331210131022202001213230203221110100030...

77/79=0,332120103130112223233303002123202311131...

78/79=0,333030021232023111313321201031301122232...

On remarque que le produit du nombre de périodes (2) et de leurs longueurs (39) est égal à 78 et donc au premier -1.