cadre

Liste des fractions de n/97 en base 4.

Il existe 4 périodes de 24 chiffres pour n/97 en base 4.

Pour toutes les fractions de n/97 en base 4, la période de 1/97 revient alors 24 fois (en orange)

1/97=0,000222032200333111301133...

2/97=0,001110131001332223202332...

3/97=0,001332223202332001110131...

4/97=0,002220322003331113011330...

5/97=0,003103020210330230313123...

6/97=0,003331113011330002220322...

7/97=0,010213211212323120122121...

8/97=0,011101310013322232023320...

9/97=0,011330002220322003331113...

10/97=0,012212101021321121232312...

11/97=0,013100133222320233200111...

12/97=0,013322232023320011101310...

13/97=0,020210330230313123003103...

14/97=0,021033023031312300310302...

15/97=0,021321121232312012212101...

16/97=0,022203220033311130113300...

17/97=0,023031312300310302021033...

18/97=0,023320011101310013322232...

19/97=0,030202103302303131230031...

20/97=0,031030202103302303131230...

21/97=0,031312300310302021033023...

22/97=0,032200333111301133000222...

23/97=0,033023031312300310302021...

24/97=0,033311130113300022203220...

25/97=0,100133222320233200111013...

26/97=0,101021321121232312012212...

27/97=0,101310013322232023320011...

28/97=0,102132112123231201221210...

29/97=0,103020210330230313123003...

30/97=0,103302303131230031030202...

31/97=0,110131001332223202332001...

32/97=0,111013100133222320233200...

33/97=0,111301133000222032200333...

34/97=0,112123231201221210102132...

35/97=0,113011330002220322003331...

36/97=0,113300022203220033311130...

37/97=0,120122121010213211212323...

38/97=0,121010213211212323120122...

39/97=0,121232312012212101021321...

40/97=0,122121010213211212323120...

41/97=0,123003103020210330230313...

42/97=0,123231201221210102132112...

43/97=0,130113300022203220033311...

44/97=0,131001332223202332001110...

45/97=0,131230031030202103302303...

46/97=0,132112123231201221210102...

47/97=0,133000222032200333111301...

48/97=0,133222320233200111013100...

49/97=0,200111013100133222320233...

50/97=0,200333111301133000222032...

51/97=0,201221210102132112123231...

52/97=0,202103302303131230031030...

53/97=0,202332001110131001332223...

54/97=0,203220033311130113300022...

55/97=0,210102132112123231201221...

56/97=0,210330230313123003103020...

57/97=0,211212323120122121010213...

58/97=0,212101021321121232312012...

59/97=0,212323120122121010213211...

60/97=0,213211212323120122121010...

61/97=0,220033311130113300022203...

62/97=0,220322003331113011330002...

63/97=0,221210102132112123231201...

64/97=0,222032200333111301133000...

65/97=0,222320233200111013100133...

66/97=0,223202332001110131001332...

67/97=0,230031030202103302303131...

68/97=0,230313123003103020210330...

69/97=0,231201221210102132112123...

70/97=0,232023320011101310013322...

71/97=0,232312012212101021321121...

72/97=0,233200111013100133222320...

73/97=0,300022203220033311130113...

74/97=0,300310302021033023031312...

75/97=0,301133000222032200333111...

76/97=0,302021033023031312300310...

77/97=0,302303131230031030202103...

78/97=0,303131230031030202103302...

79/97=0,310013322232023320011101...

80/97=0,310302021033023031312300...

81/97=0,311130113300022203220033...

82/97=0,312012212101021321121232...

83/97=0,312300310302021033023031...

84/97=0,313123003103020210330230...

85/97=0,320011101310013322232023...

86/97=0,320233200111013100133222...

87/97=0,321121232312012212101021...

88/97=0,322003331113011330002220...

89/97=0,322232023320011101310013...

90/97=0,323120122121010213211212...

91/97=0,330002220322003331113011...

92/97=0,330230313123003103020210...

93/97=0,331113011330002220322003...

94/97=0,332001110131001332223202...

95/97=0,332223202332001110131001...

96/97=0,333111301133000222032200...

On remarque que le produit du nombre de périodes (4) et de leurs longueurs (24) est égal à 96 et donc au premier -1.