Liste des fractions de n/97 en base 4.
Il existe 4 périodes de 24 chiffres pour n/97 en base 4.
Pour toutes les fractions de n/97 en base 4, la période de 1/97 revient alors 24 fois (en orange)
1/97=0,000222032200333111301133...
2/97=0,001110131001332223202332...
3/97=0,001332223202332001110131...
4/97=0,002220322003331113011330...
5/97=0,003103020210330230313123...
6/97=0,003331113011330002220322...
7/97=0,010213211212323120122121...
8/97=0,011101310013322232023320...
9/97=0,011330002220322003331113...
10/97=0,012212101021321121232312...
11/97=0,013100133222320233200111...
12/97=0,013322232023320011101310...
13/97=0,020210330230313123003103...
14/97=0,021033023031312300310302...
15/97=0,021321121232312012212101...
16/97=0,022203220033311130113300...
17/97=0,023031312300310302021033...
18/97=0,023320011101310013322232...
19/97=0,030202103302303131230031...
20/97=0,031030202103302303131230...
21/97=0,031312300310302021033023...
22/97=0,032200333111301133000222...
23/97=0,033023031312300310302021...
24/97=0,033311130113300022203220...
25/97=0,100133222320233200111013...
26/97=0,101021321121232312012212...
27/97=0,101310013322232023320011...
28/97=0,102132112123231201221210...
29/97=0,103020210330230313123003...
30/97=0,103302303131230031030202...
31/97=0,110131001332223202332001...
32/97=0,111013100133222320233200...
33/97=0,111301133000222032200333...
34/97=0,112123231201221210102132...
35/97=0,113011330002220322003331...
36/97=0,113300022203220033311130...
37/97=0,120122121010213211212323...
38/97=0,121010213211212323120122...
39/97=0,121232312012212101021321...
40/97=0,122121010213211212323120...
41/97=0,123003103020210330230313...
42/97=0,123231201221210102132112...
43/97=0,130113300022203220033311...
44/97=0,131001332223202332001110...
45/97=0,131230031030202103302303...
46/97=0,132112123231201221210102...
47/97=0,133000222032200333111301...
48/97=0,133222320233200111013100...
49/97=0,200111013100133222320233...
50/97=0,200333111301133000222032...
51/97=0,201221210102132112123231...
52/97=0,202103302303131230031030...
53/97=0,202332001110131001332223...
54/97=0,203220033311130113300022...
55/97=0,210102132112123231201221...
56/97=0,210330230313123003103020...
57/97=0,211212323120122121010213...
58/97=0,212101021321121232312012...
59/97=0,212323120122121010213211...
60/97=0,213211212323120122121010...
61/97=0,220033311130113300022203...
62/97=0,220322003331113011330002...
63/97=0,221210102132112123231201...
64/97=0,222032200333111301133000...
65/97=0,222320233200111013100133...
66/97=0,223202332001110131001332...
67/97=0,230031030202103302303131...
68/97=0,230313123003103020210330...
69/97=0,231201221210102132112123...
70/97=0,232023320011101310013322...
71/97=0,232312012212101021321121...
72/97=0,233200111013100133222320...
73/97=0,300022203220033311130113...
74/97=0,300310302021033023031312...
75/97=0,301133000222032200333111...
76/97=0,302021033023031312300310...
77/97=0,302303131230031030202103...
78/97=0,303131230031030202103302...
79/97=0,310013322232023320011101...
80/97=0,310302021033023031312300...
81/97=0,311130113300022203220033...
82/97=0,312012212101021321121232...
83/97=0,312300310302021033023031...
84/97=0,313123003103020210330230...
85/97=0,320011101310013322232023...
86/97=0,320233200111013100133222...
87/97=0,321121232312012212101021...
88/97=0,322003331113011330002220...
89/97=0,322232023320011101310013...
90/97=0,323120122121010213211212...
91/97=0,330002220322003331113011...
92/97=0,330230313123003103020210...
93/97=0,331113011330002220322003...
94/97=0,332001110131001332223202...
95/97=0,332223202332001110131001...
96/97=0,333111301133000222032200...
On remarque que le produit du nombre de périodes (4) et de leurs longueurs (24) est égal à 96 et donc au premier -1.