Liste des fractions de n/113 en base 4.
Il existe 8 périodes de 14 chiffres pour n/113 en base 4.
Pour toutes les fractions de n/113 en base 4, la période de 1/113 revient alors 14 fois (en orange)
1/113=0,00021003331233...
2/113=0,00102013323132...
3/113=0,00123023321031...
4/113=0,00210033312330...
5/113=0,00231103310223...
6/113=0,00312113302122...
7/113=0,00333123300021...
8/113=0,01020133231320...
9/113=0,01101203223213...
10/113=0,01122213221112...
11/113=0,01203223213011...
12/113=0,01230233210310...
13/113=0,01311303202203...
14/113=0,01332313200102...
15/113=0,02013323132001...
16/113=0,02100333123300...
17/113=0,02122003121133...
18/113=0,02203013113032...
19/113=0,02230023110331...
20/113=0,02311033102230...
21/113=0,02332103100123...
22/113=0,03013113032022...
23/113=0,03100123023321...
24/113=0,03121133021220...
25/113=0,03202203013113...
26/113=0,03223213011012...
27/113=0,03310223002311...
28/113=0,03331233000210...
29/113=0,10012302332103...
30/113=0,10033312330002...
31/113=0,10120322321301...
32/113=0,10201332313200...
33/113=0,10223002311033...
34/113=0,10310012302332...
35/113=0,10331022300231...
36/113=0,11012032232130...
37/113=0,11033102230023...
38/113=0,11120112221322...
39/113=0,11201122213221...
40/113=0,11222132211120...
41/113=0,11303202203013...
42/113=0,11330212200312...
43/113=0,12011222132211...
44/113=0,12032232130110...
45/113=0,12113302122003...
46/113=0,12200312113302...
47/113=0,12221322111201...
48/113=0,12302332103100...
49/113=0,12330002100333...
50/113=0,13011012032232...
51/113=0,13032022030131...
52/113=0,13113032022030...
53/113=0,13200102013323...
54/113=0,13221112011222...
55/113=0,13302122003121...
56/113=0,13323132001020...
57/113=0,20010201332313...
58/113=0,20031211330212...
59/113=0,20112221322111...
60/113=0,20133231320010...
61/113=0,20220301311303...
62/113=0,20301311303202...
63/113=0,20322321301101...
64/113=0,21003331233000...
65/113=0,21031001230233...
66/113=0,21112011222132...
67/113=0,21133021220031...
68/113=0,21220031211330...
69/113=0,21301101203223...
70/113=0,21322111201122...
71/113=0,22003121133021...
72/113=0,22030131130320...
73/113=0,22111201122213...
74/113=0,22132211120112...
75/113=0,22213221112011...
76/113=0,22300231103310...
77/113=0,22321301101203...
78/113=0,23002311033102...
79/113=0,23023321031001...
80/113=0,23110331022300...
81/113=0,23132001020133...
82/113=0,23213011012032...
83/113=0,23300021003331...
84/113=0,23321031001230...
85/113=0,30002100333123...
86/113=0,30023110331022...
87/113=0,30110120322321...
88/113=0,30131130320220...
89/113=0,30212200312113...
90/113=0,30233210310012...
91/113=0,30320220301311...
92/113=0,31001230233210...
93/113=0,31022300231103...
94/113=0,31103310223002...
95/113=0,31130320220301...
96/113=0,31211330212200...
97/113=0,31233000210033...
98/113=0,31320010201332...
99/113=0,32001020133231...
100/113=0,32022030131130...
101/113=0,32103100123023...
102/113=0,32130110120322...
103/113=0,32211120112221...
104/113=0,32232130110120...
105/113=0,32313200102013...
106/113=0,33000210033312...
107/113=0,33021220031211...
108/113=0,33102230023110...
109/113=0,33123300021003...
110/113=0,33210310012302...
111/113=0,33231320010201...
112/113=0,33312330002100...
On remarque que le produit du nombre de périodes (8) et de leurs longueurs (14) est égal à 112 et donc au premier -1.