Liste des fractions de n/79 en base 5.
Il existe 2 périodes de 39 chiffres pour n/79 en base 5.
Pour toutes les fractions de n/79 en base 5, la période de 1/79 revient alors 39 fois (en orange)
1/79=0,001242343022312114401113103220030402411...
2/79=0,003040241100124234302231211440111310322...
3/79=0,004333134122441404203344320210142213233...
4/79=0,011131032200304024110012423430223121144...
5/79=0,012423430223121144011131032200304024110...
6/79=0,014221323300433313412244140420334432021...
7/79=0,021014221323300433313412244140420334432...
8/79=0,022312114401113103220030402411001242343...
9/79=0,024110012423430223121144011131032200304...
10/79=0,030402411001242343022312114401113103220...
11/79=0,032200304024110012423430223121144011131...
12/79=0,033443202101422132330043331341224414042...
13/79=0,040241100124234302231211440111310322003...
14/79=0,042033443202101422132330043331341224414...
15/79=0,043331341224414042033443202101422132330...
16/79=0,100124234302231211440111310322003040241...
17/79=0,101422132330043331341224414042033443202...
18/79=0,103220030402411001242343022312114401113...
19/79=0,110012423430223121144011131032200304024...
20/79=0,111310322003040241100124234302231211440...
21/79=0,113103220030402411001242343022312114401...
22/79=0,114401113103220030402411001242343022312...
23/79=0,121144011131032200304024110012423430223...
24/79=0,122441404203344320210142213233004333134...
25/79=0,124234302231211440111310322003040241100...
26/79=0,131032200304024110012423430223121144011...
27/79=0,132330043331341224414042033443202101422...
28/79=0,134122441404203344320210142213233004333...
29/79=0,140420334432021014221323300433313412244...
30/79=0,142213233004333134122441404203344320210...
31/79=0,144011131032200304024110012423430223121...
32/79=0,200304024110012423430223121144011131032...
33/79=0,202101422132330043331341224414042033443...
34/79=0,203344320210142213233004333134122441404...
35/79=0,210142213233004333134122441404203344320...
36/79=0,211440111310322003040241100124234302231...
37/79=0,213233004333134122441404203344320210142...
38/79=0,220030402411001242343022312114401113103...
39/79=0,221323300433313412244140420334432021014...
40/79=0,223121144011131032200304024110012423430...
41/79=0,224414042033443202101422132330043331341...
42/79=0,231211440111310322003040241100124234302...
43/79=0,233004333134122441404203344320210142213...
44/79=0,234302231211440111310322003040241100124...
45/79=0,241100124234302231211440111310322003040...
46/79=0,242343022312114401113103220030402411001...
47/79=0,244140420334432021014221323300433313412...
48/79=0,300433313412244140420334432021014221323...
49/79=0,302231211440111310322003040241100124234...
50/79=0,304024110012423430223121144011131032200...
51/79=0,310322003040241100124234302231211440111...
52/79=0,312114401113103220030402411001242343022...
53/79=0,313412244140420334432021014221323300433...
54/79=0,320210142213233004333134122441404203344...
55/79=0,322003040241100124234302231211440111310...
56/79=0,323300433313412244140420334432021014221...
57/79=0,330043331341224414042033443202101422132...
58/79=0,331341224414042033443202101422132330043...
59/79=0,333134122441404203344320210142213233004...
60/79=0,334432021014221323300433313412244140420...
61/79=0,341224414042033443202101422132330043331...
62/79=0,343022312114401113103220030402411001242...
63/79=0,344320210142213233004333134122441404203...
64/79=0,401113103220030402411001242343022312114...
65/79=0,402411001242343022312114401113103220030...
66/79=0,404203344320210142213233004333134122441...
67/79=0,411001242343022312114401113103220030402...
68/79=0,412244140420334432021014221323300433313...
69/79=0,414042033443202101422132330043331341224...
70/79=0,420334432021014221323300433313412244140...
71/79=0,422132330043331341224414042033443202101...
72/79=0,423430223121144011131032200304024110012...
73/79=0,430223121144011131032200304024110012423...
74/79=0,432021014221323300433313412244140420334...
75/79=0,433313412244140420334432021014221323300...
76/79=0,440111310322003040241100124234302231211...
77/79=0,441404203344320210142213233004333134122...
78/79=0,443202101422132330043331341224414042033...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (39) est égal à 78 et donc au premier -1.