Liste des fractions de n/109 en base 5.
Il existe 4 périodes de 27 chiffres pour n/109 en base 5.
Pour toutes les fractions de n/109 en base 5, la période de 1/109 revient alors 27 fois (en orange)
1/109=0,001033133242110440201300321...
2/109=0,002121322034221430403101142...
3/109=0,003210010331332421104402013...
4/109=0,004243144123443411311202334...
5/109=0,010331332421104402013003210...
6/109=0,011420021213220342214304031...
7/109=0,013003210010331332421104402...
8/109=0,014041343302442323122410223...
9/109=0,020130032100103313324211044...
10/109=0,021213220342214304031011420...
11/109=0,022301404134330244232312241...
12/109=0,023340042431441234434113112...
13/109=0,024423231224102230140413433...
14/109=0,031011420021213220342214304...
15/109=0,032100103313324211044020130...
16/109=0,033133242110440201300321001...
17/109=0,034221430403101142002121322...
18/109=0,040310114200212132203422143...
19/109=0,041343302442323122410223014...
20/109=0,042431441234434113112023340...
21/109=0,044020130032100103313324211...
22/109=0,100103313324211044020130032...
23/109=0,101142002121322034221430403...
24/109=0,102230140413433024423231224...
25/109=0,103313324211044020130032100...
26/109=0,104402013003210010331332421...
27/109=0,110440201300321001033133242...
28/109=0,112023340042431441234434113...
29/109=0,113112023340042431441234434...
30/109=0,114200212132203422143040310...
31/109=0,120233400424314412344341131...
32/109=0,121322034221430403101142002...
33/109=0,122410223014041343302442323...
34/109=0,123443411311202334004243144...
35/109=0,130032100103313324211044020...
36/109=0,131120233400424314412344341...
37/109=0,132203422143040310114200212...
38/109=0,133242110440201300321001033...
39/109=0,134330244232312241022301404...
40/109=0,140413433024423231224102230...
41/109=0,142002121322034221430403101...
42/109=0,143040310114200212132203422...
43/109=0,144123443411311202334004243...
44/109=0,200212132203422143040310114...
45/109=0,201300321001033133242110440...
46/109=0,202334004243144123443411311...
47/109=0,203422143040310114200212132...
48/109=0,210010331332421104402013003...
49/109=0,211044020130032100103313324...
50/109=0,212132203422143040310114200...
51/109=0,213220342214304031011420021...
52/109=0,214304031011420021213220342...
53/109=0,220342214304031011420021213...
54/109=0,221430403101142002121322034...
55/109=0,223014041343302442323122410...
56/109=0,224102230140413433024423231...
57/109=0,230140413433024423231224102...
58/109=0,231224102230140413433024423...
59/109=0,232312241022301404134330244...
60/109=0,233400424314412344341131120...
61/109=0,234434113112023340042431441...
62/109=0,241022301404134330244232312...
63/109=0,242110440201300321001033133...
64/109=0,243144123443411311202334004...
65/109=0,244232312241022301404134330...
66/109=0,300321001033133242110440201...
67/109=0,301404134330244232312241022...
68/109=0,302442323122410223014041343...
69/109=0,304031011420021213220342214...
70/109=0,310114200212132203422143040...
71/109=0,311202334004243144123443411...
72/109=0,312241022301404134330244232...
73/109=0,313324211044020130032100103...
74/109=0,314412344341131120233400424...
75/109=0,321001033133242110440201300...
76/109=0,322034221430403101142002121...
77/109=0,323122410223014041343302442...
78/109=0,324211044020130032100103313...
79/109=0,330244232312241022301404134...
80/109=0,331332421104402013003210010...
81/109=0,332421104402013003210010331...
82/109=0,334004243144123443411311202...
83/109=0,340042431441234434113112023...
84/109=0,341131120233400424314412344...
85/109=0,342214304031011420021213220...
86/109=0,343302442323122410223014041...
87/109=0,344341131120233400424314412...
88/109=0,400424314412344341131120233...
89/109=0,402013003210010331332421104...
90/109=0,403101142002121322034221430...
91/109=0,404134330244232312241022301...
92/109=0,410223014041343302442323122...
93/109=0,411311202334004243144123443...
94/109=0,412344341131120233400424314...
95/109=0,413433024423231224102230140...
96/109=0,420021213220342214304031011...
97/109=0,421104402013003210010331332...
98/109=0,422143040310114200212132203...
99/109=0,423231224102230140413433024...
100/109=0,424314412344341131120233400...
101/109=0,430403101142002121322034221...
102/109=0,431441234434113112023340042...
103/109=0,433024423231224102230140413...
104/109=0,434113112023340042431441234...
105/109=0,440201300321001033133242110...
106/109=0,441234434113112023340042431...
107/109=0,442323122410223014041343302...
108/109=0,443411311202334004243144123...
On remarque que le produit du nombre de périodes (4) et de leurs longueurs (27) est égal à 108 et donc au premier -1.