Liste des fractions de n/67 en base 6.
Il existe 2 périodes de 33 chiffres pour n/67 en base 6.
Pour toutes les fractions de n/67 en base 6, la période de 1/67 revient alors 33 fois (en orange)
1/67=0,003120205212332542154531514113045...
2/67=0,010240414425105524353503432230134...
3/67=0,013401024041442510552435350343223...
4/67=0,020521233254215453151411304500312...
5/67=0,024041442510552435350343223013401...
6/67=0,031202052123325421545315141130450...
7/67=0,034322301340102404144251055243535...
8/67=0,041442510552435350343223013401024...
9/67=0,045003120205212332542154531514113...
10/67=0,052123325421545315141130450031202...
11/67=0,055243535034322301340102404144251...
12/67=0,102404144251055243535034322301340...
13/67=0,105524353503432230134010240414425...
14/67=0,113045003120205212332542154531514...
15/67=0,120205212332542154531514113045003...
16/67=0,123325421545315141130450031202052...
17/67=0,130450031202052123325421545315141...
18/67=0,134010240414425105524353503432230...
19/67=0,141130450031202052123325421545315...
20/67=0,144251055243535034322301340102404...
21/67=0,151411304500312020521233254215453...
22/67=0,154531514113045003120205212332542...
23/67=0,202052123325421545315141130450031...
24/67=0,205212332542154531514113045003120...
25/67=0,212332542154531514113045003120205...
26/67=0,215453151411304500312020521233254...
27/67=0,223013401024041442510552435350343...
28/67=0,230134010240414425105524353503432...
29/67=0,233254215453151411304500312020521...
30/67=0,240414425105524353503432230134010...
31/67=0,243535034322301340102404144251055...
32/67=0,251055243535034322301340102404144...
33/67=0,254215453151411304500312020521233...
34/67=0,301340102404144251055243535034322...
35/67=0,304500312020521233254215453151411...
36/67=0,312020521233254215453151411304500...
37/67=0,315141130450031202052123325421545...
38/67=0,322301340102404144251055243535034...
39/67=0,325421545315141130450031202052123...
40/67=0,332542154531514113045003120205212...
41/67=0,340102404144251055243535034322301...
42/67=0,343223013401024041442510552435350...
43/67=0,350343223013401024041442510552435...
44/67=0,353503432230134010240414425105524...
45/67=0,401024041442510552435350343223013...
46/67=0,404144251055243535034322301340102...
47/67=0,411304500312020521233254215453151...
48/67=0,414425105524353503432230134010240...
49/67=0,421545315141130450031202052123325...
50/67=0,425105524353503432230134010240414...
51/67=0,432230134010240414425105524353503...
52/67=0,435350343223013401024041442510552...
53/67=0,442510552435350343223013401024041...
54/67=0,450031202052123325421545315141130...
55/67=0,453151411304500312020521233254215...
56/67=0,500312020521233254215453151411304...
57/67=0,503432230134010240414425105524353...
58/67=0,510552435350343223013401024041442...
59/67=0,514113045003120205212332542154531...
60/67=0,521233254215453151411304500312020...
61/67=0,524353503432230134010240414425105...
62/67=0,531514113045003120205212332542154...
63/67=0,535034322301340102404144251055243...
64/67=0,542154531514113045003120205212332...
65/67=0,545315141130450031202052123325421...
66/67=0,552435350343223013401024041442510...
On remarque que le produit du nombre de périodes (2) et de leurs longueurs (33) est égal à 66 et donc au premier -1.