Liste des fractions de n/139 en base 6.
Il existe 6 périodes de 23 chiffres pour n/139 en base 6.
Pour toutes les fractions de n/139 en base 6, la période de 1/139 revient alors 23 fois (en orange)
1/139=0,00131535322432415221245...
2/139=0,00303515045305234442534...
3/139=0,00435454412142054104223...
4/139=0,01011434135014513325512...
5/139=0,01143413501451332551201...
6/139=0,01315353224324152212450...
7/139=0,01451332551201011434135...
8/139=0,02023312314033431055424...
9/139=0,02155252040510250321113...
10/139=0,02331231403343105542402...
11/139=0,02503211130215525204051...
12/139=0,03035150453052344425340...
13/139=0,03211130215525204051025...
14/139=0,03343105542402023312314...
15/139=0,03515045305234442534003...
16/139=0,04051025032111302155252...
17/139=0,04223004354544121420541...
18/139=0,04354544121420541042230...
19/139=0,04530523444253400303515...
20/139=0,05102503211130215525204...
21/139=0,05234442534003035150453...
22/139=0,05410422300435454412142...
23/139=0,05542402023312314033431...
24/139=0,10114341350145133255120...
25/139=0,10250321113021552520405...
26/139=0,10422300435454412142054...
27/139=0,10554240202331231403343...
28/139=0,11130215525204051025032...
29/139=0,11302155252040510250321...
30/139=0,11434135014513325512010...
31/139=0,12010114341350145133255...
32/139=0,12142054104223004354544...
33/139=0,12314033431055424020233...
34/139=0,12450013153532243241522...
35/139=0,13021552520405102503211...
36/139=0,13153532243241522124500...
37/139=0,13325512010114341350145...
38/139=0,13501451332551201011434...
39/139=0,14033431055424020233123...
40/139=0,14205410422300435454412...
41/139=0,14341350145133255120101...
42/139=0,14513325512010114341350...
43/139=0,15045305234442534003035...
44/139=0,15221245001315353224324...
45/139=0,15353224324152212450013...
46/139=0,15525204051025032111302...
47/139=0,20101143413501451332551...
48/139=0,20233123140334310554240...
49/139=0,20405102503211130215525...
50/139=0,20541042230043545441214...
51/139=0,21113021552520405102503...
52/139=0,21245001315353224324152...
53/139=0,21420541042230043545441...
54/139=0,21552520405102503211130...
55/139=0,22124500131535322432415...
56/139=0,22300435454412142054104...
57/139=0,22432415221245001315353...
58/139=0,23004354544121420541042...
59/139=0,23140334310554240202331...
60/139=0,23312314033431055424020...
61/139=0,23444253400303515045305...
62/139=0,24020233123140334310554...
63/139=0,24152212450013153532243...
64/139=0,24324152212450013153532...
65/139=0,24500131535322432415221...
66/139=0,25032111302155252040510...
67/139=0,25204051025032111302155...
68/139=0,25340030351504530523444...
69/139=0,25512010114341350145133...
70/139=0,30043545441214205410422...
71/139=0,30215525204051025032111...
72/139=0,30351504530523444253400...
73/139=0,30523444253400303515045...
74/139=0,31055424020233123140334...
75/139=0,31231403343105542402023...
76/139=0,31403343105542402023312...
77/139=0,31535322432415221245001...
78/139=0,32111302155252040510250...
79/139=0,32243241522124500131535...
80/139=0,32415221245001315353224...
81/139=0,32551201011434135014513...
82/139=0,33123140334310554240202...
83/139=0,33255120101143413501451...
84/139=0,33431055424020233123140...
85/139=0,34003035150453052344425...
86/139=0,34135014513325512010114...
87/139=0,34310554240202331231403...
88/139=0,34442534003035150453052...
89/139=0,35014513325512010114341...
90/139=0,35150453052344425340030...
91/139=0,35322432415221245001315...
92/139=0,35454412142054104223004...
93/139=0,40030351504530523444253...
94/139=0,40202331231403343105542...
95/139=0,40334310554240202331231...
96/139=0,40510250321113021552520...
97/139=0,41042230043545441214205...
98/139=0,41214205410422300435454...
99/139=0,41350145133255120101143...
100/139=0,41522124500131535322432...
101/139=0,42054104223004354544121...
102/139=0,42230043545441214205410...
103/139=0,42402023312314033431055...
104/139=0,42534003035150453052344...
105/139=0,43105542402023312314033...
106/139=0,43241522124500131535322...
107/139=0,43413501451332551201011...
108/139=0,43545441214205410422300...
109/139=0,44121420541042230043545...
110/139=0,44253400303515045305234...
111/139=0,44425340030351504530523...
112/139=0,45001315353224324152212...
113/139=0,45133255120101143413501...
114/139=0,45305234442534003035150...
115/139=0,45441214205410422300435...
116/139=0,50013153532243241522124...
117/139=0,50145133255120101143413...
118/139=0,50321113021552520405102...
119/139=0,50453052344425340030351...
120/139=0,51025032111302155252040...
121/139=0,51201011434135014513325...
122/139=0,51332551201011434135014...
123/139=0,51504530523444253400303...
124/139=0,52040510250321113021552...
125/139=0,52212450013153532243241...
126/139=0,52344425340030351504530...
127/139=0,52520405102503211130215...
128/139=0,53052344425340030351504...
129/139=0,53224324152212450013153...
130/139=0,53400303515045305234442...
131/139=0,53532243241522124500131...
132/139=0,54104223004354544121420...
133/139=0,54240202331231403343105...
134/139=0,54412142054104223004354...
135/139=0,54544121420541042230043...
136/139=0,55120101143413501451332...
137/139=0,55252040510250321113021...
138/139=0,55424020233123140334310...
On remarque que le produit du nombre de périodes (6) et de leurs longueurs (23) est égal à 138 et donc au premier -1.