Liste des premiers dont l'abondance est 47,81...
Les premiers listés ci-dessous sont inférieurs à 501089 et triés par ordre croissant d'abondance.
Le pic situé à 47,81 contient de nombreux premiers avec p - 1 multiple de (2 et 23).
Pour les premiers ne contenant que ces facteurs (2 et 23), l 'abondance est égale à 47,826086957 et se calcule à l'aide de 11/ 23.
Premier
|
Abondance
|
Décomposition du premier - 1
|
139703
|
47,81033915
|
2 * 23 * 3037
|
283637
|
47,810574116
|
2^2 * 23 * 3083
|
143567
|
47,810762994
|
2 * 23 * 3121
|
146603
|
47,81108034
|
2 * 23 * 3187
|
151847
|
47,811598593
|
2 * 23 * 3301
|
152123
|
47,81162488
|
2 * 23 * 3307
|
305717
|
47,811694514
|
2^2 * 23 * 3323
|
313997
|
47,812074039
|
2^2 * 23 * 3413
|
159023
|
47,812252393
|
2 * 23 * 3457
|
161507
|
47,812465172
|
2 * 23 * 3511
|
161783
|
47,81248841
|
2 * 23 * 3517
|
164267
|
47,812694045
|
2 * 23 * 3571
|
330557
|
47,81277605
|
2^2 * 23 * 3593
|
170063
|
47,813150498
|
2 * 23 * 3697
|
171719
|
47,813275254
|
2 * 23 * 3733
|
346013
|
47,813370635
|
2^2 * 23 * 3761
|
175859
|
47,813576863
|
2 * 23 * 3823
|
352637
|
47,813609501
|
2^2 * 23 * 3833
|
177239
|
47,813674268
|
2 * 23 * 3853
|
361469
|
47,813914371
|
2^2 * 23 * 3929
|
369197
|
47,814169168
|
2^2 * 23 * 4013
|
184967
|
47,814192879
|
2 * 23 * 4021
|
185243
|
47,8142106
|
2 * 23 * 4027
|
376373
|
47,814396395
|
2^2 * 23 * 4091
|
191039
|
47,814570923
|
2 * 23 * 4153
|
193247
|
47,814702504
|
2 * 23 * 4201
|
400109
|
47,815089926
|
2^2 * 23 * 4349
|
200699
|
47,815125213
|
2 * 23 * 4363
|
203459
|
47,815273914
|
2 * 23 * 4423
|
204563
|
47,815332271
|
2 * 23 * 4447
|
412253
|
47,815413873
|
2^2 * 23 * 4481
|
211187
|
47,815669599
|
2 * 23 * 4591
|
213947
|
47,815803988
|
2 * 23 * 4651
|
214499
|
47,815830451
|
2 * 23 * 4663
|
429917
|
47,815852399
|
2^2 * 23 * 4673
|
435437
|
47,815982142
|
2^2 * 23 * 4733
|
437093
|
47,816020426
|
2^2 * 23 * 4751
|
220019
|
47,816087775
|
2 * 23 * 4783
|
221399
|
47,816150101
|
2 * 23 * 4813
|
452549
|
47,816364231
|
2^2 * 23 * 4919
|
228023
|
47,816438765
|
2 * 23 * 4957
|
457517
|
47,816469807
|
2^2 * 23 * 4973
|
229403
|
47,816496805
|
2 * 23 * 4987
|
460829
|
47,816538926
|
2^2 * 23 * 5009
|
230507
|
47,816542736
|
2 * 23 * 5011
|
461933
|
47,816561745
|
2^2 * 23 * 5021
|
235199
|
47,816733135
|
2 * 23 * 5113
|
474077
|
47,816805744
|
2^2 * 23 * 5153
|
237683
|
47,816830892
|
2 * 23 * 5167
|
240719
|
47,816947632
|
2 * 23 * 5233
|
242927
|
47,817030701
|
2 * 23 * 5281
|
244859
|
47,817102157
|
2 * 23 * 5323
|
245963
|
47,817142485
|
2 * 23 * 5347
|
492293
|
47,817149172
|
2^2 * 23 * 5351
|
248723
|
47,81724174
|
2 * 23 * 5407
|
249827
|
47,817280827
|
2 * 23 * 5431
|
258659
|
47,817581517
|
2 * 23 * 5623
|
264179
|
47,817759238
|
2 * 23 * 5743
|
268043
|
47,817879288
|
2 * 23 * 5827
|
270527
|
47,817954651
|
2 * 23 * 5881
|
276323
|
47,818125231
|
2 * 23 * 6007
|
277703
|
47,818164795
|
2 * 23 * 6037
|
280187
|
47,81823503
|
2 * 23 * 6091
|
285707
|
47,818386733
|
2 * 23 * 6211
|
285983
|
47,818394165
|
2 * 23 * 6217
|
288467
|
47,818460408
|
2 * 23 * 6271
|
289847
|
47,818496719
|
2 * 23 * 6301
|
291503
|
47,818539838
|
2 * 23 * 6337
|
291779
|
47,818546977
|
2 * 23 * 6343
|
306407
|
47,81890694
|
2 * 23 * 6661
|
311099
|
47,81901523
|
2 * 23 * 6763
|
316067
|
47,819126385
|
2 * 23 * 6871
|
320483
|
47,819222296
|
2 * 23 * 6967
|
323243
|
47,81928091
|
2 * 23 * 7027
|
331523
|
47,819450896
|
2 * 23 * 7207
|
332903
|
47,819478405
|
2 * 23 * 7237
|
335663
|
47,819532744
|
2 * 23 * 7297
|
336767
|
47,819554231
|
2 * 23 * 7321
|
340079
|
47,819617852
|
2 * 23 * 7393
|
343943
|
47,819690529
|
2 * 23 * 7477
|
349187
|
47,819786589
|
2 * 23 * 7591
|
353603
|
47,819865272
|
2 * 23 * 7687
|
354983
|
47,819889459
|
2 * 23 * 7717
|