Liste des premiers dont l'abondance est 48,26...
Les premiers listés ci-dessous sont inférieurs à 501089 et triés par ordre croissant d'abondance.
Le pic situé à 48,26 contient de nombreux premiers avec p - 1 multiple de (2 et 29).
Avec toutefois cinq exception en bleu.
Pour les premiers ne contenant que ces facteurs (2 et 29), l 'abondance est égale à 48,275862069 et se calcule à l'aide de 14/ 29.
Premier
|
Abondance
|
Décomposition du premier - 1
|
177539
|
48,260090797
|
2 * 29 * 3061
|
177887
|
48,260121651
|
2 * 29 * 3067
|
181019
|
48,260393994
|
2 * 29 * 3121
|
23747
|
48,260759707
|
2 * 31 * 383
|
371549
|
48,260789992
|
2^2 * 29 * 3203
|
186587
|
48,260855584
|
2 * 29 * 3217
|
191459
|
48,261237452
|
2 * 29 * 3301
|
388253
|
48,261438447
|
2^2 * 29 * 3347
|
395909
|
48,261717369
|
2^2 * 29 * 3413
|
401477
|
48,261913539
|
2^2 * 29 * 3461
|
201203
|
48,261945706
|
2 * 29 * 3469
|
420269
|
48,262537238
|
2^2 * 29 * 3623
|
210599
|
48,262566596
|
2 * 29 * 3631
|
425837
|
48,262711466
|
2^2 * 29 * 3671
|
215123
|
48,262846199
|
2 * 29 * 3709
|
436973
|
48,263046603
|
2^2 * 29 * 3767
|
443237
|
48,263227716
|
2^2 * 29 * 3821
|
446717
|
48,26332614
|
2^2 * 29 * 3851
|
227303
|
48,263543656
|
2 * 29 * 3919
|
464813
|
48,263814187
|
2^2 * 29 * 4007
|
234959
|
48,263945045
|
2 * 29 * 4051
|
235307
|
48,26396267
|
2 * 29 * 4057
|
472469
|
48,264009414
|
2^2 * 29 * 4073
|
474557
|
48,264061565
|
2^2 * 29 * 4091
|
238439
|
48,264118974
|
2 * 29 * 4111
|
479429
|
48,264181483
|
2^2 * 29 * 4133
|
482213
|
48,26424892
|
2^2 * 29 * 4157
|
244703
|
48,26441958
|
2 * 29 * 4219
|
495437
|
48,264558894
|
2^2 * 29 * 4271
|
250967
|
48,264705179
|
2 * 29 * 4327
|
251663
|
48,264736035
|
2 * 29 * 4339
|
261407
|
48,265150762
|
2 * 29 * 4507
|
262103
|
48,265179205
|
2 * 29 * 4519
|
263843
|
48,265249657
|
2 * 29 * 4549
|
269063
|
48,265455546
|
2 * 29 * 4639
|
18797
|
48,265588423
|
2^2 * 37 * 127
|
274283
|
48,265653597
|
2 * 29 * 4729
|
278459
|
48,265806693
|
2 * 29 * 4801
|
6863
|
48,265811717
|
2 * 47 * 73
|
27449
|
48,265811717
|
2^3 * 47 * 73
|
109793
|
48,265811717
|
2^5 * 47 * 73
|
280199
|
48,265869135
|
2 * 29 * 4831
|
284723
|
48,266027915
|
2 * 29 * 4909
|
287159
|
48,266111339
|
2 * 29 * 4951
|
288203
|
48,266146661
|
2 * 29 * 4969
|
294467
|
48,266353331
|
2 * 29 * 5077
|
302123
|
48,26659429
|
2 * 29 * 5209
|
310127
|
48,266833481
|
2 * 29 * 5347
|
317783
|
48,267050997
|
2 * 29 * 5479
|
320219
|
48,267118026
|
2 * 29 * 5521
|
323003
|
48,267193392
|
2 * 29 * 5569
|
323699
|
48,267212031
|
2 * 29 * 5581
|
327179
|
48,267304036
|
2 * 29 * 5641
|
335879
|
48,267525709
|
2 * 29 * 5791
|
339707
|
48,267619648
|
2 * 29 * 5857
|
348407
|
48,267825468
|
2 * 29 * 6007
|
351887
|
48,267904946
|
2 * 29 * 6067
|
363719
|
48,268163797
|
2 * 29 * 6271
|
367547
|
48,268243975
|
2 * 29 * 6337
|
368939
|
48,268272718
|
2 * 29 * 6361
|
369983
|
48,268294133
|
2 * 29 * 6379
|
371027
|
48,268315428
|
2 * 29 * 6397
|
374159
|
48,268378599
|
2 * 29 * 6451
|
375203
|
48,268399422
|
2 * 29 * 6469
|
375899
|
48,26841324
|
2 * 29 * 6481
|
378683
|
48,268468002
|
2 * 29 * 6529
|
379727
|
48,268488331
|
2 * 29 * 6547
|
381467
|
48,268521965
|
2 * 29 * 6577
|
386339
|
48,268614529
|
2 * 29 * 6661
|
393299
|
48,268742785
|
2 * 29 * 6781
|
400607
|
48,268872658
|
2 * 29 * 6907
|
403043
|
48,268914902
|
2 * 29 * 6949
|
405827
|
48,26896256
|
2 * 29 * 6997
|
407567
|
48,268992016
|
2 * 29 * 7027
|
408263
|
48,269003728
|
2 * 29 * 7039
|
418007
|
48,269163601
|
2 * 29 * 7207
|
427403
|
48,26931086
|
2 * 29 * 7369
|
434363
|
48,269415833
|
2 * 29 * 7489
|
442019
|
48,269527485
|
2 * 29 * 7621
|
443063
|
48,269542412
|
2 * 29 * 7639
|
444803
|
48,269567133
|
2 * 29 * 7669
|
445499
|
48,269576968
|
2 * 29 * 7681
|
445847
|
48,269581874
|
2 * 29 * 7687
|