Liste des premiers dont l'abondance est proche de 50%...
Ce pic correspond aux premier avec p - 1 multiple de 2.
Il est matériellement difficile d'afficher les 4578 premiers inférieurs à 501089 dont l'abondance est supérieure à 49,99.
Voici donc la fin de la liste triée par abondance, ces premiers sont le plus à droite dans le graphe récapitulatif.
Les abondances strictement égale à 50% se trouvent à la fin du tableau.
p - 1 est alors toujours une puissance de 2.
Premier
|
Abondance
|
Décomposition du premier - 1
|
480023
|
49,999791676
|
2 * 240011
|
480203
|
49,999791754
|
2 * 240101
|
480419
|
49,999791848
|
2 * 240209
|
480527
|
49,999791895
|
2 * 240263
|
480707
|
49,999791973
|
2 * 240353
|
480959
|
49,999792082
|
2 * 240479
|
481199
|
49,999792185
|
2 * 240599
|
481787
|
49,999792439
|
2 * 240893
|
482099
|
49,999792573
|
2 * 241049
|
482123
|
49,999792584
|
2 * 241061
|
482507
|
49,999792749
|
2 * 241253
|
482519
|
49,999792754
|
2 * 241259
|
482627
|
49,9997928
|
2 * 241313
|
482687
|
49,999792826
|
2 * 241343
|
483179
|
49,999793037
|
2 * 241589
|
483563
|
49,999793201
|
2 * 241781
|
483767
|
49,999793288
|
2 * 241883
|
483839
|
49,999793319
|
2 * 241919
|
483863
|
49,99979333
|
2 * 241931
|
484019
|
49,999793396
|
2 * 242009
|
484259
|
49,999793499
|
2 * 242129
|
484487
|
49,999793596
|
2 * 242243
|
484787
|
49,999793723
|
2 * 242393
|
485207
|
49,999793902
|
2 * 242603
|
485363
|
49,999793968
|
2 * 242681
|
486023
|
49,999794248
|
2 * 243011
|
486203
|
49,999794324
|
2 * 243101
|
486323
|
49,999794375
|
2 * 243161
|
486407
|
49,99979441
|
2 * 243203
|
486527
|
49,999794461
|
2 * 243263
|
486923
|
49,999794628
|
2 * 243461
|
486947
|
49,999794638
|
2 * 243473
|
487079
|
49,999794694
|
2 * 243539
|
487247
|
49,999794765
|
2 * 243623
|
487703
|
49,999794957
|
2 * 243851
|
487727
|
49,999794967
|
2 * 243863
|
487979
|
49,999795073
|
2 * 243989
|
488399
|
49,999795249
|
2 * 244199
|
488603
|
49,999795334
|
2 * 244301
|
488627
|
49,999795344
|
2 * 244313
|
488759
|
49,9997954
|
2 * 244379
|
489179
|
49,999795575
|
2 * 244589
|
489239
|
49,999795601
|
2 * 244619
|
489407
|
49,999795671
|
2 * 244703
|
489803
|
49,999795836
|
2 * 244901
|
489887
|
49,999795871
|
2 * 244943
|
490367
|
49,999796071
|
2 * 245183
|
490559
|
49,999796151
|
2 * 245279
|
490643
|
49,999796185
|
2 * 245321
|
491003
|
49,999796335
|
2 * 245501
|
491039
|
49,99979635
|
2 * 245519
|
491279
|
49,999796449
|
2 * 245639
|
491423
|
49,999796509
|
2 * 245711
|
491483
|
49,999796534
|
2 * 245741
|
491819
|
49,999796673
|
2 * 245909
|
492659
|
49,999797019
|
2 * 246329
|
493139
|
49,999797217
|
2 * 246569
|
493463
|
49,99979735
|
2 * 246731
|
493607
|
49,999797409
|
2 * 246803
|
493859
|
49,999797513
|
2 * 246929
|
494147
|
49,999797631
|
2 * 247073
|
494387
|
49,999797729
|
2 * 247193
|
494519
|
49,999797783
|
2 * 247259
|
494687
|
49,999797852
|
2 * 247343
|
494783
|
49,999797891
|
2 * 247391
|
494843
|
49,999797915
|
2 * 247421
|
494903
|
49,99979794
|
2 * 247451
|
494927
|
49,99979795
|
2 * 247463
|
495563
|
49,999798209
|
2 * 247781
|
495707
|
49,999798268
|
2 * 247853
|
495827
|
49,999798316
|
2 * 247913
|
495983
|
49,99979838
|
2 * 247991
|
496127
|
49,999798438
|
2 * 248063
|
496283
|
49,999798502
|
2 * 248141
|
496487
|
49,999798584
|
2 * 248243
|
496583
|
49,999798623
|
2 * 248291
|
496703
|
49,999798672
|
2 * 248351
|
497279
|
49,999798905
|
2 * 248639
|
497507
|
49,999798997
|
2 * 248753
|
497579
|
49,999799026
|
2 * 248789
|
497963
|
49,999799181
|
2 * 248981
|
498119
|
49,999799244
|
2 * 249059
|
498467
|
49,999799385
|
2 * 249233
|
498767
|
49,999799505
|
2 * 249383
|
499067
|
49,999799626
|
2 * 249533
|
499127
|
49,99979965
|
2 * 249563
|
499559
|
49,999799823
|
2 * 249779
|
499943
|
49,999799977
|
2 * 249971
|
499979
|
49,999799991
|
2 * 249989
|
500519
|
49,999800207
|
2 * 250259
|
500603
|
49,999800241
|
2 * 250301
|
500723
|
49,999800288
|
2 * 250361
|
500807
|
49,999800322
|
2 * 250403
|
3
|
50,
|
2
|
5
|
50,
|
2^2
|
17
|
50,
|
2^4
|
257
|
50,
|
2^8
|
65537
|
50,
|
2^16
|