Liste des périodes des premiers inférieurs à 258 en base 3

Leur graphe n'est disponible que pour les périodes uniques en italique, pour lesquelles la longueur de la période est p-1.

Leur symétrie est soulignée par le symbole === qui les coupe en deux et dont la somme des demi-périodes est une série de 2

Pour des raisons de place limitée (100M) la visualisation des périodes uniques sous forme graphique (qui occupe 42M) n'est disponible que pour les premiers inférieurs à 110. Mais leur observation peut se faire à l'aide du programme en téléchargement.

Le premier 3 divise 3, la longueur de la période est nulle

1/5=0,01===21...

1/7=0,010===212...

1/11=0,00211...

1/13=0,002...

1/17=0,00112021===22110201...

1/19=0,001102100===221120122...

1/23=0,00101120021...

1/29=0,00022101020111===22200121202111...

1/31=0,000212111221020===222010111001202...

1/37=0,000201200222021022...

1/41=0,00012221...

1/43=0,000121221202002111210===222101001020220111012...

1/47=0,00012011121002022001011...

1/53=0,00011120210101200211220221===22211102012121022011002001...

1/59=0,00011010012111021022200202121...

1/61=0,0001022212...

1/67=0,0001012122022212101002...

1/71=0,00010102102000202112110011120012201...

1/73=0,000100222122...

1/79=0,000100020011002201211012210212120201110===222122202211220021011210012010102021112...

1/83=0,00002221001022010120121120221101002021111...

1/89=0,00002201201102020001211010221111001012202121===22220021021120202221011212001111221210020101...

1/97=0,000021111220202212122210222201111002020010100012...

1/101=0,00002101221221010110211110022000112102202120202211===22220121001001212112011112200222110120020102020011...

1/103=0,0000210020021212022220122022010102...

1/107=0,00002021022120122102002202221111010021120101121011001...

1/109=0,000020200120121100102010222...

1/113=0,00002011001200011022010100022121020200122012111101021101===22220211221022211200212122200101202022100210111121201121...

1/127=0,000012201222120112000211221221022002010101211202012022111121100===222210021000102110222011001001200220212121011020210200111101122...

1/131=0,00001212002021012202211001102221202121111012011010022001000211021...

1/137=0,00001202220001011221000210021200112012010100110102020022021111012111===22221020002221211001222012201022110210212122112120202200201111210111...

1/139=0,000012020121022112202120221001112221211112101002201102110102122200020===222210202101200110020102001221110001011110121220021120112120100022202...

1/149=0,00001122000220110111120221112212012020212220211021210101022212201221012001===22221100222002112111102001110010210202010002011201012121200010021001210221...

1/151=0,00001121110011021212102102222110111221120101012012...

1/157=0,000011122100222022102112002202021220120222211100122000200120110220020201002102...

1/163=0,000011110202101002211000211100202212112002011010210212100121101202201001022210000===222211112020121220011222011122020010110220211212012010122101121020021221200012222...

1/167=0,00001110021202112101111202001021220220020210100012211011001010120000222012011200121...

1/173=0,00001101220222012221010102201001002111102101121112200002210211221102212020212102002011===22221121002000210001212120021221220111120121101110022220012011001120010202010120220211...

1/179=0,00001100122122111102110112000202100210201110100221210102022110001210212112022220021200201...

1/181=0,000011000202010201200122110020021011022210122...

1/191=0,00001021100110201111201020002010020210012111212001010112102022100012002101212220000211220022111...

1/193=0,0000102022221202...

1/197=0,00001020022020000211012111000112210122200100212102210020120121212011101102020102220221111021221121===22221202200202222011210111222110012100022122010120012202102101010211121120202120002001111201001101...

1/199=0,000010122220120001121221220200201112111222022200110012200212012102112101022102010101120201221111200===222212100002102221101001002022021110111000200022112210022010210120110121200120212121102021001111022...

1/211=0,000010110021200022001122220200210212210121220001112110102010120201221222100201120121111200200102111221120===222212112201022200221100002022012010012101002221110112120212102021001000122021102101111022022120111001102...

1/223=0,000010021021010212121110120222111220221102111120010122001221022020021222202110110201020210001211000222011010010===222212201201212010101112102000111002001120111102212100221001200202201000020112112021202012221011222000211212212...

1/227=0,00001001220101100101201000211110222001022022210122111002021000110211211121011202110100222202120120200220121202211...

1/229=0,000010011221200222112021012012001212221020020201110021002...

1/233=0,00001001011021202121220210112221121110021122111102221021001212001121210200002002022120112020211121002220012220120021===22221221211201020101002012110001101112201100111120001201221010221101012022220220200102110202011101220002210002102201...

1/239=0,00001000110012102102001220212001020112220121221112100101011112000020002201012112110102112010021110022110202200012002021...

1/241=0,000010000200011000220012101012021011121000120010100202011110222212222022211222002210121210201211101222102212122020211112...

1/251=0,00000222010202122122022121100110120210221111100010212120001121120021102101212100020202222100120111020020110021002200121110101...

1/257=0,00000221112021202220110220220021020201112121021200001220001120112210221211210112111110002012120100010210010011002121220200121001===22222001110201020002112002002201202021110101201022221002221102110012001011012110111112220210102122212012212211220101002022101221...