cadre

Liste des périodes des premiers inférieurs à 258 en base 5

Leur graphe n'est disponible que pour les périodes uniques en italique, pour lesquelles la longueur de la période est p-1.

Leur symétrie est soulignée par le symbole === qui les coupe en deux et dont la somme des demi-périodes est une série de 4

Pour des raisons de place limitée (100M) la visualisation des périodes uniques sous forme graphique (qui occupe 42M) n'est disponible que pour les premiers inférieurs é 110. Mais leur observation peut se faire à l'aide du programme en téléchargement.

1/3=0,1===3...

Le premier 5 divise 5, la longueur de la période est nulle

1/7=0,032===412...

1/11=0,02114...

1/13=0,0143...

1/17=0,01213402===43231042...

1/19=0,011242141...

1/23=0,01020413321===43424031123...

1/29=0,00412334403211...

1/31=0,004...

1/37=0,003142122040113342===441302322404331102...

1/41=0,00301102204414334224...

1/43=0,002423141223434043111===442021303221010401333...

1/47=0,00231221041114241401012===44213223403330203043432...

1/53=0,00213440120142041103122331===44231004324302403341322113...

1/59=0,00202440340132141301113422121...

1/61=0,002011033210130442433411234314...

1/67=0,0014131010244303134342...

1/71=0,00134...

1/73=0,001324010032030201141104023322131021===443120434412414243303340421122313423...

1/79=0,001242343022312114401113103220030402411...

1/83=0,00122311130312403424212103301400422433441===44322133314132041020232341143044022011003...

1/89=0,00120024010302110422134432442043414233402231...

1/97=0,001121020123312214114344103133401400224204030212===443323424321132230330100341311043044220240414232...

1/101=0,0011043224134234123140344...

1/103=0,001101322142131112340414102424014323244003310022031===443343122302313332104030342020430121200441134422413...

1/107=0,00104100322302022411123233430311341440130420442312432===44340344122142422033321211014133103004314024002132012...

1/109=0,001033133242110440201300321...

1/113=0,00102311412122301130431033400312440241422403442343211201===44342133032322143314013411044132004203022041002101233243...

1/127=0,000443003432030333222444001441012414111222...

1/131=0,00043411413342131003402022200241240301131443021211122101324321404...

1/137=0,00042401114313432322243423032131441133344211241040443041422103120242===44402043330131012122201021412313003311100233203404001403022341324202...

1/139=0,000422201112141340130213211311404124241010144212234110241432400324431...

1/149=0,0004044131023202411232434030432211101...

1/151=0,000403214300131143410031234232011302401402311030331012211121202442224241044...

1/157=0,000344230120403222422112310201333433303402323141441401423411320443200434203132===444100214324041222022332134243111011141042121303003043021033124001244010241312...

1/163=0,000340412140110314134214401444104032304334130310230043...

1/167=0,00033324013442334123430113320131040434340012220303244022330241023214031213142423002===44411120431002110321014331124313404010104432224141200422114203421230413231302021442...

1/173=0,00033012433222032132303334311310430300413142320442404010342232424420233310100121030421===44411432011222412312141110133134014144031302124002040434102212020024211134344323414023...

1/179=0,00032212112402311322443300202141343212440023440401112030140143420131422203341141021041311...

1/181=0,000321130333104...

1/191=0,0003114003430404324...

1/193=0,000310434402131211133144102411102100112142430431242232134321032220420022434041141304001432414211===444134010042313233311300342033342344332302014013202212310123412224024422010403303140443012030233...

1/197=0,00030412413222402034313334232421314143412104043214310242441044023434430220114422123323044333114112===44414032031222042410131110212023130301032340401230134202003400421010014224330022321121400111330332...

1/199=0,000303224322123433021123124241301...

1/211=0,00024401122424132012322314324211414...

1/223=0,000240013201001030031402002110113304004220232113013441014231032432034012120414123024241333301104033222102213121===444204431243443414413042442334331140440224212331431003430213412012410432324030321420203111143340411222342231323...

1/227=0,00023340401414003411403230231014423443133222341424232042242032013401130044342213141111432121132433432410042003122===44421104043030441033041214213430021001311222103020212402202412431043314400102231303333012323312011012034402441322...

1/229=0,000233103431113122024332111024044002042430330013043213433444211341013331322420112333420400442402014114431401231011...

1/233=0,00023201222341003334202241421011204330031021400130104223123021113112330313034124040143120200440323224424113344343041===44421243222103441110242203023433240114413423044314340221321423331332114131410320404301324244004121220020331100101403...

1/239=0,00023014201342120010103340323424002021223120240300404300124103110131410030321122031332011114224411321402223400432314331...

1/241=0,0002244041113044142044422004033314003024...

1/251=0,0002221111414012441001444...

1/257=0,00022034432323004142042141321241443011401040424122211202231033220123423401311324000441244202010133341343331430334410233021314032===44422410012121440302402303123203001433043404020322233242213411224321021043133120444003200242434311103101113014110034211423130412...