cadre

Liste des périodes des premiers inférieurs à 258 en base 6

Leur graphe n'est disponible que pour les périodes uniques en italique, pour lesquelles la longueur de la période est p-1.

Leur symétrie est soulignée par le symbole === qui les coupe en deux et dont la somme des demi-périodes est une série de 5

Pour des raisons de place limitée (100M) la visualisation des périodes uniques sous forme graphique (qui occupe 42M) n'est disponible que pour les premiers inférieurs é 110. Mais leur observation peut se faire à l'aide du programme en téléchargement.

Le premier 3 divise 6, la longueur de la période est nulle

1/5=0,1...

1/7=0,05...

1/11=0,03134===52421...

1/13=0,024340===531215...

1/17=0,02041224===53514331...

1/19=0,015211325...

1/23=0,01322030441...

1/29=0,01124045443151...

1/31=0,010545...

1/37=0,0055...

1/41=0,00513354124403302344===55042201431152253211...

1/43=0,005...

1/47=0,00433240302144201310521...

1/53=0,00402414511245515314104431...

1/59=0,00335444022351041343242503014===55220111533204514212313052541...

1/61=0,003312504044154453014342320220===552243051511401102541213235335...

1/67=0,003120205212332542154531514113045...

1/71=0,00301304321405023113344522412040201...

1/73=0,002543042344035400553012513211520155...

1/79=0,002422325434441304033512354102140052450===553133230121114251522043201453415503105...

1/83=0,00233404200511212401422425203245254410534===55322151355044343154133130352310301145021...

1/89=0,00223212031225444151542143033502004504241024===55332343524330111404013412522053551051314531...

1/97=0,002120553435...

1/101=0,0020455351...

1/103=0,002032545413030512423213441510350224024435433400410===553523010142525043132342114045205331531120122155145...

1/107=0,00200401202405214433311022044132305014032104212425254===55355154353150341122244533511423250541523451343130301...

1/109=0,001552011532051412330454203145221113324502151213125300===554003544023504143225101352410334442231053404342430255...

1/113=0,00152451505225501332023143025111544204243222003453434144===55403104050330054223532412530444011351312333552102121411...

1/127=0,001411211534221012300503403545110304130231501552333132043113530===554144344021334543255052152010445251425324054003222423512442025...

1/131=0,00135205255101531302250121244325151334132021105115452232200314414===55420350300454024253305434311230404221423534450440103323355241141...

1/137=0,00132431545405440411205131103225511342003053035352153212224143022104===55423124010150115144350424452330044213552502520203402343331412533451...

1/139=0,00131535322432415221245...

1/149=0,0012410433132311550111253454150403511...

1/151=0,001232551413020512453213311511220221454450303324241134352104015235501400250===554323004142535043102342244044335334101105252231314421203451540320054155305...

1/157=0,001213101051350542211443550255151225232102304452034002430202143141524423331540===554342454504205013344112005300404330323453251103521553125353412414031132224015...

1/163=0,001154122204505304345452125...

1/167=0,00114321325243332014203003514044242144400510130153502212105220023304305453110403241...

1/173=0,0011254043245044414453143402025251344031551...

1/179=0,00111235155110122403115021135043430523252552214020022251435422024521023404231413130145054===55444320400445433152440534420512125032303003341535533304120133531034532151324142425410501...

1/181=0,001105433513425034401331405100554450122042130521154224150455...

1/191=0,0010441344500535321...

1/193=0,001041424012541532155343230353003205120042505440554514131543014023400212325202552350435513050115...

1/197=0,00103245545231...

1/199=0,001030241404411543152214254212153244540021005232132235303444325524243505335200420145043045150113330===554525314151144012403341301343402311015534550323423320252111230031312050220355135410512510405442225...

1/211=0,001005041331543451015132145303325525323511200403225021150312411301311402215535414324520242135212512205445...

1/223=0,000545115243433344323552043042052533245412023255303220134041103414001534234531311133051544130124145510535224050===555010440312122211232003512513503022310143532300252335421514452141554021321024244422504011425431410045020331505...

1/227=0,00054131104525530512223313012321444121251415033515132050241020211532435245452011340133031552105511242001523022134===55501424451030025043332242543234111434304140522040423505314535344023120310103544215422524003450044313554032533421...

1/229=0,000535423223415344434001515250451235133312003434541342514311024011313523125433022052023031450255310044144050103340===555020132332140211121554040305104320422243552121014213041244531544242032430122533503532524105300245511411505452215...

1/233=0,00053212352524310541445204535540513041010253403222114204003412543353500434511132314354433002440415424213325052240224===55502343203031245014110351020015042514545302152333441351552143012202055121044423241201122553115140131342230503315331...

1/239=0,00052311403151441...

1/241=0,00052133205550342235...

1/251=0,00050551410333030023253503144313011424531352134303512243454045131534121525022343545040542311151552320251133353554140123344454===55505004145222525532302052411242544131024203421252043312101510424021434030533212010515013244404003235304422202001415432211101...

1/257=0,00050131245410235451354012223224125442340443242200140302535220515343152024450452255325121330524400321005514441435130344053341344===55505424310145320104201543332331430113215112313355415253020335040212403531105103300230434225031155234550041114120425211502214211...